Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 8: 15310, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28508864

RESUMO

Maxwell's demon is an imaginary entity that reduces the entropy of a system and generates free energy in the system. About 150 years after its proposal, theoretical studies explained the physical validity of Maxwell's demon in the context of information thermodynamics, and there have been successful experimental demonstrations of energy generation by the demon. The demon's next task is to convert the generated free energy to work that acts on the surroundings. Here, we demonstrate that Maxwell's demon can generate and output electric current and power with individual randomly moving electrons in small transistors. Real-time monitoring of electron motion shows that two transistors functioning as gates that control an electron's trajectory so that an electron moves directionally. A numerical calculation reveals that power generation is increased by miniaturizing the room in which the electrons are partitioned. These results suggest that evolving transistor-miniaturization technology can increase the demon's power output.

3.
J Phys Condens Matter ; 28(5): 055801, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26761118

RESUMO

We performed noise measurements for a Corbino disk in the quantum Hall effect breakdown regime. We investigated two Corbino-disk-type devices with different sizes and observed that the Fano factor increases when the length between the contacts doubles. This observation is consistent with the avalanche picture suggested by the bootstrap electron heating model. The temperature dependence of the Fano factor indicates that the avalanche effect becomes more prominent as temperature decreases. Moreover, in the highly nonlinear regime, negative differential resistance and temporal oscillation due to bistability are found. A possible interpretation of this result is that Zener tunneling of electrons between Landau levels occurs.

4.
Phys Rev Lett ; 106(17): 176601, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21635054

RESUMO

We measure the current and shot noise in a quantum dot in the Kondo regime to address the nonequilibrium properties of the Kondo effect. By systematically tuning the temperature and gate voltages to define the level positions in the quantum dot, we observe an enhancement of the shot noise as temperature decreases below the Kondo temperature, which indicates that the two-particle scattering process grows as the Kondo state evolves. Below the Kondo temperature, the Fano factor defined at finite temperature is found to exceed the expected value of unity from the noninteracting model, reaching 1.8±0.2.

5.
Phys Rev Lett ; 104(8): 080602, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20366923

RESUMO

We experimentally demonstrate the validity of nonequilibrium fluctuation relations by using a quantum coherent conductor. In equilibrium the fluctuation-dissipation relation leads to the correlation between current and current noise at the conductor, namely, the Johnson-Nyquist relation. When the conductor is voltage biased so that the nonlinear regime is entered, the fluctuation theorem has predicted similar nonequilibrium fluctuation relations, which hold true even when the Onsager-Casmir relations are broken in magnetic fields. Our experiments qualitatively validate the predictions as the first evidence of this theorem in the nonequilibrium quantum regime.

6.
Rev Sci Instrum ; 80(9): 096105, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19791976

RESUMO

We developed a quantum noise measurement system in a dilution refrigerator by using three kinds of cryogenic low pass filters. One of them is a commercial low pass filter inserted into the noise measurement lines instead of the conventional powder filter, which assures well-defined circuit parameters necessary for the noise measurement at a finite frequency. We checked that this filter gives sufficiently large attenuation up to 20 GHz at room temperature, 77 and 4.2 K. The electron temperature of the mesoscopic device placed in the present system was confirmed to be down to around 20 mK by measuring the thermal noise of the device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...