Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 17(6): 1411-1427, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35523180

RESUMO

The insulin receptor (INSR) is an evolutionarily conserved signaling protein that regulates development and cellular metabolism. INSR signaling promotes neurogenesis in Drosophila; however, a specific role for the INSR in maintaining adult neural stem cells (NSCs) in mammals has not been investigated. We show that conditionally deleting the Insr gene in adult mouse NSCs reduces subventricular zone NSCs by ∼70% accompanied by a corresponding increase in progenitors. Insr deletion also produced hyposmia caused by aberrant olfactory bulb neurogenesis. Interestingly, hippocampal neurogenesis and hippocampal-dependent behaviors were unperturbed. Highly aggressive proneural and mesenchymal glioblastomas had high INSR/insulin-like growth factor (IGF) pathway gene expression, and isolated glioma stem cells had an aberrantly high ratio of INSR:IGF type 1 receptor. Moreover, INSR knockdown inhibited GBM tumorsphere growth. Altogether, these data demonstrate that the INSR is essential for a subset of normal NSCs, as well as for brain tumor stem cell self-renewal.


Assuntos
Células-Tronco Adultas , Ventrículos Laterais/metabolismo , Células-Tronco Neurais , Receptor de Insulina/metabolismo , Somatomedinas , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Ventrículos Laterais/citologia , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Somatomedinas/metabolismo
2.
Stem Cell Reports ; 12(4): 816-830, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30905741

RESUMO

Tissue-specific stem cells have unique properties and growth requirements, but a small set of juxtacrine and paracrine signals have been identified that are required across multiple niches. Whereas insulin-like growth factor II (IGF-II) is necessary for prenatal growth, its role in adult stem cell physiology is largely unknown. We show that loss of Igf2 in adult mice resulted in a ∼50% reduction in slowly dividing, label-retaining cells in the two regions of the brain that harbor neural stem cells. Concordantly, induced Igf2 deletion increased newly generated neurons in the olfactory bulb accompanied by hyposmia, and caused impairments in learning and memory and increased anxiety. Induced Igf2 deletion also resulted in rapid loss of stem and progenitor cells in the crypts of Lieberkühn, leading to body-weight loss and lethality and the inability to produce organoids in vitro. These data demonstrate that IGF-II is critical for multiple adult stem cell niches.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Diferenciação Celular , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Nicho de Células-Tronco/genética , Animais , Biomarcadores , Encéfalo/metabolismo , Imuno-Histoquímica , Intestinos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurogênese , Bulbo Olfatório/metabolismo , Especificidade de Órgãos
3.
Dev Neurosci ; 40(4): 312-324, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30336480

RESUMO

Neural stem cells are attracting enormous attention in regenerative medicine due to their ability to self-renew and differentiate into the cell lineages that constitute the central nervous system. However, little is known about the mechanism underlying the regulation of their redox environment, which is essential for homeostatic cellular functions. The redox-modulated c-Jun N-terminal kinases (JNK) are a molecular switch in stress signal transduction and are involved in numerous brain functions. Using a selective but broad-spectrum inhibitor of JNK 1/2/3, we investigated the role of JNK in regulating the levels of reactive oxygen species in mitochondria, mitochondrial membrane potential, viability, proliferation and lineage alterations in human H9-derived neural stem/progenitor cells (NSPs). Relative to diluent control, incubation of the NSPs for 24 h with SP600125, an anthrapyrazolone inhibitor of JNK, resulted in increased abundance of mitochondrial superoxide radicals (p < 0.05), concomitant with decreases in mitochondrial membrane potential (p < 0.001), while maintaining a consistent and stable mitochondrial mass. Whereas H9-derived NSPs collectively express Nestin, a marker for neural stem cells, a panel of cell surface markers analyzed by flow cytometry revealed that they are a heterogeneous population that sustains this diversity after JNK inhibition. In addition, the levels of nuclear forkhead homeobox type O3a (FoxO3a), a regulator of redox homeostasis, decreased, which was associated with a decrease in overall cell viability as measured by Annexin V staining (p < 0.001), and supported by an increased level of cleaved Poly-ADP-ribose polymerase and decreased survivin expression. However, staining with the proliferation marker, Ki67, revealed the presence of a significant percentage of proliferating cells in the treated population. Together, the results support a role for JNK in the redox-homeostasis and fate of NSPs. Identifying regulators of the cellular redox environment will enhance our understanding of the mechanisms that modulate neural stem cell functions and optimize therapeutic applications targeting JNK.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mitocôndrias/metabolismo , Células-Tronco Neurais/citologia , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/citologia , Apoptose/fisiologia , Sobrevivência Celular/fisiologia , Humanos , Potencial da Membrana Mitocondrial/fisiologia , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
4.
Front Neurol ; 5: 79, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904523

RESUMO

In this study, we assessed the importance of insulin-like growth factor (IGF) and epidermal growth factor (EGF) receptor co-signaling for rat neural precursor (NP) cell proliferation and self-renewal in the context of a developmental brain injury that is associated with cerebral palsy. Consistent with previous studies, we found that there is an increase in the in vitro growth of subventricular zone NPs isolated acutely after cerebral hypoxia-ischemia; however, when cultured in medium that is insufficient to stimulate the IGF type 1 receptor, neurosphere formation and the proliferative capacity of those NPs was severely curtailed. This reduced growth capacity could not be attributed simply to failure to survive. The growth and self-renewal of the NPs could be restored by addition of both IGF-I and IGF-II. Since the size of the neurosphere is predominantly due to cell proliferation we hypothesized that the IGFs were regulating progression through the cell cycle. Analyses of cell cycle progression revealed that IGF-1R activation together with EGFR co-signaling decreased the percentage of cells in G1 and enhanced cell progression into S and G2. This was accompanied by increases in expression of cyclin D1, phosphorylated histone 3, and phosphorylated Rb. Based on these data, we conclude that coordinate signaling between the EGF receptor and the IGF type 1 receptor is necessary for the normal proliferation of NPs as well as for their reactive expansion after injury. These data indicate that manipulations that maintain or amplify IGF signaling in the brain during recovery from developmental brain injuries will enhance the production of new brain cells to improve neurological function in children who are at risk for developing cerebral palsy.

5.
J Biol Chem ; 289(8): 4626-33, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24398690

RESUMO

The objective of this study was to employ genetically engineered IGF-II analogs to establish which receptor(s) mediate the stemness promoting actions of IGF-II on mouse subventricular zone neural precursors. Neural precursors from the subventricular zone were propagated in vitro in culture medium supplemented with IGF-II analogs. Cell growth and identity were analyzed using sphere generation and further analyzed by flow cytometry. F19A, an analog of IGF-II that does not bind the IGF-2R, stimulated an increase in the proportion of neural stem cells (NSCs) while decreasing the proportion of the later stage progenitors at a lower concentration than IGF-II. V43M, which binds to the IGF-2R with high affinity but which has low binding affinity to the IGF-1R and to the A isoform of the insulin receptor (IR-A) failed to promote NSC growth. The positive effects of F19A on NSC growth were unaltered by the addition of a functional blocking antibody to the IGF-1R. Altogether, these data lead to the conclusion that IGF-II promotes stemness of NSCs via the IR-A and not through activation of either the IGF-1R or the IGF-2R.


Assuntos
Fator de Crescimento Insulin-Like II/análogos & derivados , Fator de Crescimento Insulin-Like II/farmacologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Receptor de Insulina/metabolismo , Animais , Biomarcadores/metabolismo , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Humanos , Proteína 2 Inibidora de Diferenciação/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica/efeitos dos fármacos , Receptor IGF Tipo 2/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo
6.
Int J Radiat Biol ; 87(7): 673-82, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21599612

RESUMO

PURPOSE: To determine whether the bystander effects induced by chemotherapeutic agents are similar to those induced by ionising radiation and to analyse the cell dependency, if any, in different human cell types such as normal lung fibroblasts (WI-38), human bone marrow mesenchymal stem cells (hBMSC), lung adenocarcinoma (A-549, NCI-H23) and peripheral blood lymphocytes (PBL). MATERIALS AND METHODS: The cells mentioned above were exposed to two different concentrations of bleomycin (BLM) and neocarzinostatin (NCS) and to X-irradiation. Co-culture methodology was adopted to study the in vitro bystander effects. DNA damage was measured using a micronucleus (MN) assay as an endpoint to study the bystander response. High performance liquid chromatography (HPLC) was performed to rule out any residual activity of BLM and NCS. To further investigate if this bystander response is mediated through reactive oxygen species (ROS), the bystander cells were pretreated with dimethyl sulphoxide (DMSO), an ROS scavenger, and co-cultured with cells exposed to BLM. RESULTS: Bystander response was observed in all five types of human cells (WI-38, hBMSC, NCI-H23, A-549 and PBL) co-cultured with exposed cells. While all cell types showed a bystander response, undifferentiated hBMSC and PBL showed a higher magnitude of bystander response. A reduction in the MN frequency was observed in co-cultured hBMSC and PBL pretreated with DMSO. CONCLUSION: These results suggest that the chemotherapeutic agents, BLM and NCS, induce bystander response which is similar to that induced by radiation. Furthermore, it is observed that the bystander effect is independent of the cell type studied. Our results further support the involvement of ROS in mediating the bystander response induced by BLM.


Assuntos
Bleomicina/farmacologia , Efeito Espectador/efeitos dos fármacos , Efeito Espectador/efeitos da radiação , Zinostatina/farmacologia , Antibióticos Antineoplásicos/farmacologia , Efeito Espectador/fisiologia , Linhagem Celular , Humanos , Doses de Radiação , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...