Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prog Lipid Res ; 86: 101157, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35104467

RESUMO

Marine ecosystems are rich in "omega-3" long-chain (C20-24) polyunsaturated fatty acids (LC-PUFA). Their production has been historically accepted to derive mostly from marine microbes. This long-standing dogma has been challenged recently by the discovery that numerous invertebrates, mostly with an aquatic life-style, have the enzyme machinery necessary for the de novo biosynthesis of polyunsaturated fatty acids (PUFA) and, from them, LC-PUFA. The key breakthrough was the detection in these animals of enzymes called "methyl-end desaturases" enabling PUFA de novo biosynthesis. Moreover, other enzymes with pivotal roles in LC-PUFA biosynthesis, including front-end desaturases and elongation of very long- chain fatty acids proteins, have been characterised in several non-vertebrate animal phyla. This review provides a comprehensive overview of the complement and functions of these gene/protein families in aquatic animals, particularly invertebrates and fish. Therefore, we expand and re-define our previous revision of the LC-PUFA biosynthetic enzymes present in chordates to animals as a whole, discussing how key genomic events have determined the diversity and distribution of desaturase and elongase genes in different taxa. We conclude that both invertebrates and fish display active, but markedly different, LC-PUFA biosynthetic gene networks that result from a complex evolutionary path combined with functional diversification and plasticity.


Assuntos
Ácidos Graxos Dessaturases , Ácidos Graxos Ômega-3 , Animais , Ecossistema , Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos/genética , Ácidos Graxos Insaturados , Peixes/genética
2.
Curr Gene Ther ; 4(1): 15-31, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15032611

RESUMO

Efficient and regulated co-expression of multiple genes is an important consideration in the design of gene therapy vectors. While the augmentation of a single therapeutic gene is often sufficient for gene therapy of simple mendelian disorders, strategies for the treatment of complex disorders and infectious diseases necessitate the introduction of multiple genes into the cell. Complex disorders such as cancer often involve mutations in multiple genes and a combination strategy targeting different defective genes simultaneously are often more effective than any single strategy. Likewise, approaches for treating infectious diseases such as HIV-1 (human immunodeficiency virus) often involve the blocking of multiple steps of the viral replication pathway simultaneously to prevent the emergence of resistant strains of the virus. Even for the treatment of single gene defects, the additional incorporation of a selectable marker gene is often necessary to achieve sustained expression of the therapeutic gene in the cells. Among the several different strategies to co-express multiple genes, the incorporation of an IRES (internal ribosome entry site) into gene therapy vector design represents one of the more promising strategies. IRES functions as a ribosome-landing pad for the efficient internal initiation of translation ensuring coordinate expression of several genes and are located at the 5'UTR (5' untranslated regions) of these genes. Currently, the most popular IRES utilized for gene therapy is the IRES from the EMCV (encephalomyocarditis virus). However, the major caveat with present vector systems utilizing this IRES is that the expression of the downstream gene is significantly less efficient than the upstream gene. This review will examine the growing list of naturally occurring and synthetic IRESes and how they can be exploited for human gene therapy.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/genética , Sequências Reguladoras de Ácido Ribonucleico , Ribossomos/genética , Animais , Humanos , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/genética , Ribossomos/química , Ribossomos/fisiologia , Proteínas Virais Reguladoras e Acessórias/classificação , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...