Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Neural Netw Learn Syst ; 26(11): 2939-48, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26277006

RESUMO

In this paper, an enhanced data-driven optimal terminal iterative learning control (E-DDOTILC) is proposed for a class of nonlinear and nonaffine discrete-time systems. A dynamical linearization approach is first developed with iterative operation points to formulate the relationship of system output and input into a linear affine form. Then, an ILC law is constructed with a nonlinear learning gain, which is a function about the system partial derivative with respect to the time-varying control input. In addition, a parameter updating law is designed to estimate the unknown partial derivatives iteratively. The input signals of the proposed E-DDOTILC are time-varying and updated utilizing not only the terminal tracking error of the previous run but also the input signals of the previous time instants in the current iteration. The proposed approach is a data-driven control strategy and only the I/O data are required for the controller design and analysis. The monotonic convergence and effectiveness of the proposed approach is further verified by both the rigorous mathematical analysis and the simulation results.

2.
IEEE Trans Syst Man Cybern B Cybern ; 34(3): 1348-59, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15484908

RESUMO

In this paper, a direct adaptive iterative learning control (DAILC) based on a new output-recurrent fuzzy neural network (ORFNN) is presented for a class of repeatable nonlinear systems with unknown nonlinearities and variable initial resetting errors. In order to overcome the design difficulty due to initial state errors at the beginning of each iteration, a concept of time-varying boundary layer is employed to construct an error equation. The learning controller is then designed by using the given ORFNN to approximate an optimal equivalent controller. Some auxiliary control components are applied to eliminate approximation error and ensure learning convergence. Since the optimal ORFNN parameters for a best approximation are generally unavailable, an adaptive algorithm with projection mechanism is derived to update all the consequent, premise, and recurrent parameters during iteration processes. Only one network is required to design the ORFNN-based DAILC and the plant nonlinearities, especially the nonlinear input gain, are allowed to be totally unknown. Based on a Lyapunov-like analysis, we show that all adjustable parameters and internal signals remain bounded for all iterations. Furthermore, the norm of state tracking error vector will asymptotically converge to a tunable residual set as iteration goes to infinity. Finally, iterative learning control of two nonlinear systems, inverted pendulum system and Chua's chaotic circuit, are performed to verify the tracking performance of the proposed learning scheme.


Assuntos
Algoritmos , Inteligência Artificial , Retroalimentação , Lógica Fuzzy , Dinâmica não Linear , Redes Neurais de Computação , Teoria de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...