Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Clin J Pain ; 39(4): 188-201, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36943163

RESUMO

OBJECTIVE: This review aimed to identify, summarize, and appraise the evidence supporting the coexistence of myofascial pain (MPS) and trigger points (MTrP) in osteoarthritis (OA), and the effectiveness of MTrPs treatments in OA-related pain and physical function outcomes. METHODS: Three databases were searched from inception to June 2022. We included observational and experimental studies to fulfill our 2 study aims. Two independent reviewers conducted 2-phase screening procedures and risk of bias using checklist tools for cross-sectional, quasi-experimental, and randomized control trials. Patient characteristics, findings of active and latent MTrPs in relevant muscles, treatments, and pain and physical function outcomes were extracted from low-risk bias studies. RESULTS: The literature search yielded 2898 articles, of which 6 observational and 7 experimental studies had a low bias risk and the data extracted. Active MTrPs in knee OA patients was more evident in the quadriceps and hamstring muscles than in healthy individuals. Dry needling on active MTrPs improved pain and physical function in the short term compared with sham treatment in hip OA patients. In knee OA, dry needling on latent or active MTrPs improved pain and functional outcomes compared with sham needling but did not result in better pain and physical outcomes when combined with a physical exercise program. DISCUSSION: The presence of active versus latent MTrPs seems to be a more sensitive discriminating feature of OA given that latent is often present in OA and healthy individuals. Dry needling on active MTrPs improved pain and physical function in the short term compared with sham treatment in hip OA patients. However, the small sample size and the few number of studies limit any firm recommendation on the treatment. REGISTRY: The study protocol was prospectively registered in Open Science Framework (https://doi.org/10.17605/OSF.IO/8DVU3).


Assuntos
Síndromes da Dor Miofascial , Osteoartrite do Quadril , Osteoartrite do Joelho , Humanos , Estudos Transversais , Síndromes da Dor Miofascial/epidemiologia , Síndromes da Dor Miofascial/terapia , Síndromes da Dor Miofascial/diagnóstico , Pontos-Gatilho , Comorbidade , Dor , Estudos Observacionais como Assunto
2.
Clin Epigenetics ; 9: 89, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28855971

RESUMO

BACKGROUND: Cornelia de Lange syndrome (CdLS) is a multisystem developmental disorder frequently associated with heterozygous loss-of-function mutations of Nipped-B-like (NIPBL), the human homolog of Drosophila Nipped-B. NIPBL loads cohesin onto chromatin. Cohesin mediates sister chromatid cohesion important for mitosis but is also increasingly recognized as a regulator of gene expression. In CdLS patient cells and animal models, expression changes of multiple genes with little or no sister chromatid cohesion defect suggests that disruption of gene regulation underlies this disorder. However, the effect of NIPBL haploinsufficiency on cohesin binding, and how this relates to the clinical presentation of CdLS, has not been fully investigated. Nipbl haploinsufficiency causes CdLS-like phenotype in mice. We examined genome-wide cohesin binding and its relationship to gene expression using mouse embryonic fibroblasts (MEFs) from Nipbl+/- mice that recapitulate the CdLS phenotype. RESULTS: We found a global decrease in cohesin binding, including at CCCTC-binding factor (CTCF) binding sites and repeat regions. Cohesin-bound genes were found to be enriched for histone H3 lysine 4 trimethylation (H3K4me3) at their promoters; were disproportionately downregulated in Nipbl mutant MEFs; and displayed evidence of reduced promoter-enhancer interaction. The results suggest that gene activation is the primary cohesin function sensitive to Nipbl reduction. Over 50% of significantly dysregulated transcripts in mutant MEFs come from cohesin target genes, including genes involved in adipogenesis that have been implicated in contributing to the CdLS phenotype. CONCLUSIONS: Decreased cohesin binding at the gene regions is directly linked to disease-specific expression changes. Taken together, our Nipbl haploinsufficiency model allows us to analyze the dosage effect of cohesin loading on CdLS development.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Síndrome de Cornélia de Lange/genética , Perfilação da Expressão Gênica/métodos , Haploinsuficiência , Proteínas/genética , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/química , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Metilação de DNA , Síndrome de Cornélia de Lange/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica , Ativação Transcricional , Coesinas
3.
Biochem Cell Biol ; 89(5): 445-58, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21851156

RESUMO

Cohesins are evolutionarily conserved essential multi-protein complexes that are important for higher-order chromatin organization. They play pivotal roles in the maintenance of genome integrity through mitotic chromosome regulation, DNA repair and replication, as well as gene regulation critical for proper development and cellular differentiation. In this review, we will discuss the multifaceted functions of mammalian cohesins and their apparent functional hierarchy in the cell, with particular focus on their actions in gene regulation and their relevance to human developmental disorders.


Assuntos
Anormalidades Múltiplas/patologia , Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Animais , Proteínas de Ciclo Celular/farmacologia , Cromatina/química , Proteínas Cromossômicas não Histona/farmacologia , Humanos , Coesinas
4.
J Biol Chem ; 286(20): 17870-8, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454523

RESUMO

The ß-globin locus undergoes dynamic chromatin interaction changes in differentiating erythroid cells that are thought to be important for proper globin gene expression. However, the underlying mechanisms are unclear. The CCCTC-binding factor, CTCF, binds to the insulator elements at the 5' and 3' boundaries of the locus, but these sites were shown to be dispensable for globin gene activation. We found that, upon induction of differentiation, cohesin and the cohesin loading factor Nipped-B-like (Nipbl) bind to the locus control region (LCR) at the CTCF insulator and distal enhancer regions as well as at the specific target globin gene that undergoes activation upon differentiation. Nipbl-dependent cohesin binding is critical for long-range chromatin interactions, both between the CTCF insulator elements and between the LCR distal enhancer and the target gene. We show that the latter interaction is important for globin gene expression in vivo and in vitro. Furthermore, the results indicate that such cohesin-mediated chromatin interactions associated with gene regulation are sensitive to the partial reduction of Nipbl caused by heterozygous mutation. This provides the first direct evidence that Nipbl haploinsufficiency affects cohesin-mediated chromatin interactions and gene expression. Our results reveal that dynamic Nipbl/cohesin binding is critical for developmental chromatin organization and the gene activation function of the LCR in mammalian cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Elementos Facilitadores Genéticos/fisiologia , Regulação da Expressão Gênica/fisiologia , Elementos Isolantes/fisiologia , Globinas beta/biossíntese , Animais , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/genética , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Humanos , Células K562 , Camundongos , Mutação , Proteínas/genética , Proteínas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Globinas beta/genética , Coesinas
5.
PLoS Genet ; 5(7): e1000559, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19593370

RESUMO

Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant muscular dystrophy in which no mutation of pathogenic gene(s) has been identified. Instead, the disease is, in most cases, genetically linked to a contraction in the number of 3.3 kb D4Z4 repeats on chromosome 4q. How contraction of the 4qter D4Z4 repeats causes muscular dystrophy is not understood. In addition, a smaller group of FSHD cases are not associated with D4Z4 repeat contraction (termed "phenotypic" FSHD), and their etiology remains undefined. We carried out chromatin immunoprecipitation analysis using D4Z4-specific PCR primers to examine the D4Z4 chromatin structure in normal and patient cells as well as in small interfering RNA (siRNA)-treated cells. We found that SUV39H1-mediated H3K9 trimethylation at D4Z4 seen in normal cells is lost in FSHD. Furthermore, the loss of this histone modification occurs not only at the contracted 4q D4Z4 allele, but also at the genetically intact D4Z4 alleles on both chromosomes 4q and 10q, providing the first evidence that the genetic change (contraction) of one 4qD4Z4 allele spreads its effect to other genomic regions. Importantly, this epigenetic change was also observed in the phenotypic FSHD cases with no D4Z4 contraction, but not in other types of muscular dystrophies tested. We found that HP1gamma and cohesin are co-recruited to D4Z4 in an H3K9me3-dependent and cell type-specific manner, which is disrupted in FSHD. The results indicate that cohesin plays an active role in HP1 recruitment and is involved in cell type-specific D4Z4 chromatin regulation. Taken together, we identified the loss of both histone H3K9 trimethylation and HP1gamma/cohesin binding at D4Z4 to be a faithful marker for the FSHD phenotype. Based on these results, we propose a new model in which the epigenetic change initiated at 4q D4Z4 spreads its effect to other genomic regions, which compromises muscle-specific gene regulation leading to FSHD pathogenesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Distrofia Muscular Facioescapuloumeral/metabolismo , Animais , Cricetinae , Eucromatina/metabolismo , Células HeLa , Heterocromatina/metabolismo , Humanos , Metilação , Metiltransferases/metabolismo , Camundongos , Modelos Moleculares , Distrofia Muscular Facioescapuloumeral/genética , Reação em Cadeia da Polimerase , Proteínas Repressoras/metabolismo , Sequências de Repetição em Tandem , Células Tumorais Cultivadas , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...