Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 70(5): 1553-1564, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36378798

RESUMO

OBJECTIVE: Low back pain (LBP) is one of the leading neuromusculoskeletal (NMSK) problems around the globe. Soft Tissue Manipulation (STM) is a force-based, non-invasive intervention used to clinically address NMSK pain conditions. Current STM practice standards are mostly subjective, suggesting an urgent need for quantitative metrics. This research aims at developing a handheld, portable smart medical device for tracking real-time dispersive force-motions to characterize manual therapy treatments as Quantifiable Soft Tissue Manipulation (QSTM). METHODS: The device includes two 3D load-cells to quantify compressive and planar-shear forces, coupled with a 6 degrees-of-freedom IMU sensor for acquiring volitionally adapted therapeutic motions while scanning and mobilizing myofascial restrictions over larger areas of the body. These force-motions characterize QSTM with treatment parameters (targeted force, application angle, rate, direction, motion pattern, time) as a part of post-processing on a PC software (Q-Ware©). A human case study was conducted to treat LBP as proof-of-concept for the device's clinical usability. RESULTS: External validation of treatment parameters reported adequate device precision required for clinical use. The case study findings revealed identifiable therapeutic force-motion patterns within treatments indicating subject's elevated force-endurance with self-reported pain reduction. CONCLUSION: QSTM metrics may enable study of STM dosing for optimized pain reduction and functional outcomes using documentable manual therapy. Clinical trials will further determine its reliability and comparison to conventional STM. SIGNIFICANCE: This medical device technology not only advances the state-of-the-art manual therapy with precision rehabilitation but also augments practice with reproducibility to examine neurobiological responses of individualized STM prescriptions for NMSK pathology.


Assuntos
Dor Lombar , Manipulações Musculoesqueléticas , Humanos , Reprodutibilidade dos Testes , Dor Lombar/terapia
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4961-4964, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892321

RESUMO

Soft Tissue Manipulation (STM), a form of mechanotherapy, offers a clinical modality to examine and treat Neuromusculoskeletal (NMS) pain disorders and dysfunction. The, current STM practice is mostly subjective and reliant on anecdotal patient feedback and lacks quantification with objective metrics. This paper proposes Quantifiable Soft Tissue Manipulation (QSTM™), a sensor based computerized technological advancement in Soft tissue examination and treatment enabling new standard of practice in manual therapy. This novel medical device technology aims to produce optimum STM prescriptions using ergonomic, portable, handheld medical tools with specially contoured tips designed to palpate and assess tissue anomalies of specific musculoskeletal conditions. QSTM™ captures three-dimensional forces and motion of the mechatronic handheld tools to quantify STM treatment parameters, such as (resultant force, force application angle, rate, direction, and treatment time). Clinical practice using QSTM™ facilitates real-time visual feedback of treatment metrics and subsequent treatment documentation for comparison and analysis on a Windows based computer software (Q-Ware©). Pre-clinical testing using the QSTM™ medical device system clearly identifies inconsistencies among practitioners and distinguishes STM practice variabilities. Thus, QSTM™ is an apt tool for soft tissue treatment assessment, analysis, and individualized prescriptions for targeted STM dosing and commercialization.


Assuntos
Benchmarking , Manipulações Musculoesqueléticas , Retroalimentação , Humanos
3.
J Biomed Sci Eng ; 10(11): 550-561, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30405872

RESUMO

This study presents the development of an innovative artificial finger-like device that provides position specific mechanical loads at the end of the long bone and induces mechanotransduction in bone. Bone cells such as osteoblasts are the mechanosensitive cells that regulate bone remodelling. When they receive gentle, periodic mechanical loads, new bone formation is promoted. The proposed device is an under-actuated multi-fingered artificial hand with 4 fingers, each having two phalanges. These fingers are connected by mechanical linkages and operated by a worm gearing mechanism. With the help of 3D printing technology, a prototype device was built mostly using plastic materials. The experimental validation results show that the device is capable of generating necessary forces at the desired frequencies, which are suitable for the stimulation of bone cells and the promotion of bone formation. It is recommended that the device be tested in a clinical study for confirming its safety and efficacy with patients.

4.
Sensors (Basel) ; 16(10)2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27690057

RESUMO

This paper presents the design of an innovative device that applies dynamic mechanical load to human knee joints. Dynamic loading is employed by applying cyclic and periodic force on a target area. The repeated force loading was considered to be an effective modality for repair and rehabilitation of long bones that are subject to ailments like fractures, osteoporosis, osteoarthritis, etc. The proposed device design builds on the knowledge gained in previous animal and mechanical studies. It employs a modified slider-crank linkage mechanism actuated by a brushless Direct Current (DC) motor and provides uniform and cyclic force. The functionality of the device was simulated in a software environment and the structural integrity was analyzed using a finite element method for the prototype construction. The device is controlled by a microcontroller that is programmed to provide the desired loading force at a predetermined frequency and for a specific duration. The device was successfully tested in various experiments for its usability and full functionality. The results reveal that the device works according to the requirements of force magnitude and operational frequency. This device is considered ready to be used for a clinical study to examine whether controlled knee-loading could be an effective regimen for treating the stated bone-related ailments.

5.
J Med Device ; 7(4): 410071-4100710, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24115974

RESUMO

Joint loading is a recently developed mechanical modality, which potentially provides a therapeutic regimen to activate bone formation and prevent degradation of joint tissues. To our knowledge, however, few joint loading devices are available for clinical or point-of-care applications. Using a voice-coil actuator, we developed an electromechanical loading system appropriate for human studies and preclinical trials that should prove both safe and effective. Two specific tasks for this loading system were development of loading conditions (magnitude and frequency) suitable for humans, and provision of a convenient and portable joint loading apparatus. Desktop devices have been previously designed to evaluate the effects of various loading conditions using small and large animals. However, a portable knee loading device is more desirable from a usability point of view. In this paper, we present such a device that is designed to be portable, providing a compact, user-friendly loader. The portable device was employed to evaluate its capabilities using a human knee model. The portable device was characterized for force-pulse width modulation duty cycle and loading frequency properties. The results demonstrate that the device is capable of producing the necessary magnitude of forces at appropriate frequencies to promote the stimulation of bone growth and which can be used in clinical studies for further evaluations.

6.
Technol Cancer Res Treat ; 7(3): 197-206, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18473491

RESUMO

A new stereotactic frame system was designed at Indiana University to utilize the precision motion control of newer accelerator couches and treat obese patients previously untreatable in other frame systems during stereotactic body radiation therapy (SBRT). The repositioning accuracy and target reproducibility of this frame was evaluated in the treatment of both lung and liver tumors. The external coordinate system on the new frame was validated using a phantom system. Translational motions were carried out using couch motors. Five patients were treated with SBRT and twenty-three verification CT scans were acquired. The displacement of the gross tumor volume (GTV) and adjacent vertebral body between the original CT scan and the verification CT scans was determined. The mean setup accuracy for the patient study was less than 5 mm. Mean displacement of the GTV was 3.0 mm (0.0-6.0 mm) in the lateral (x) direction, 4.1 mm (0.0-8.9 mm) in the superior-inferior (y) direction, and 2.6 mm (0.0-10.0 mm) in the cranio-caudal (z) direction. Comparison of vertebral body position showed mean displacement of 2.4 mm (0.0 to 8.0 mm), 1.9 mm (0.0 mm to 2.0 mm), and 0.9 mm (0.0 to 5.0 mm) for the same shift directions. Repositioning could be accurately carried out from an initial reference position using the treatment couch controllers. Adequate set-up accuracy using a frame system capable of accommodating wide girth patients was achieved and was comparable to other published studies for narrower frames. With these results, a 5 mm expansion for PTV margins remains the standard for our institution.


Assuntos
Imobilização/instrumentação , Neoplasias Hepáticas/cirurgia , Neoplasias Pulmonares/cirurgia , Radiocirurgia/instrumentação , Humanos , Obesidade , Imagens de Fantasmas , Radiocirurgia/métodos , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
7.
Int J Radiat Oncol Biol Phys ; 70(5): 1571-8, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18374231

RESUMO

PURPOSE: To investigate the effectiveness of different abdominal compression levels on tumor and organ motion during stereotactic body radiotherapy of lower lobe lung and liver tumors using four-dimensional (4D)-CT scan analysis. METHODS AND MATERIALS: Three 4D-CT scans were acquired for 10 patients first using with no compression and then compared with two different levels of abdominal compression. The position of the tumor and various organs were defined at the peak inspiratory and expiratory phases and compared to determine the maximum motion. RESULTS: Mean (+/-SD) medium compression force (MC) and high compression force (HC) were 47.6 +/- 16.0 N and 90.7 +/- 27.1 N, respectively. Mean overall tumor motion was 13.6 mm (2sigma [2 sigma] 11.5-15.6), 8.3 mm (2sigma 6.0-10.5), and 7.2 mm (2sigma 5.4-9.0) for no compression, MC, and HC, respectively. A significant difference in the control of both superior-inferior (SI) and overall motion of tumors was seen with the application of MC and HC when compared with no compression (p < 0.0001 for both). High compression force improved SI and overall tumor motion compared with MC, but this was only significant for SI motion (p = 0.04 and p = 0.06). Significant control of organ motion was only seen in the pancreas (p = 0.01). CONCLUSIONS: Four-dimensional CT shows significant control of both lower lobe lung and liver tumors using abdominal compression. High levels of compression improve SI tumor motion when compared with MC.


Assuntos
Neoplasias Hepáticas/diagnóstico por imagem , Fígado/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Movimento , Tomografia Computadorizada por Raios X/métodos , Diafragma/diagnóstico por imagem , Expiração , Humanos , Inalação , Neoplasias Hepáticas/cirurgia , Neoplasias Pulmonares/cirurgia , Pressão , Radiocirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...