Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Opt ; 22(9): 1-11, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28929643

RESUMO

A critical effect found in noninvasive in vivo endomicroscopic imaging modalities is image distortions due to sporadic movement exhibited by living organisms. In three-dimensional confocal imaging, this effect results in a dataset that is tilted across deeper slices. Apart from that, the sequential flow of the imaging-processing pipeline restricts real-time adjustments due to the unavailability of information obtainable only from subsequent stages. To solve these problems, we propose an approach to render Demons-registered datasets as they are being captured, focusing on the coupling between registration and visualization. To improve the acquisition process, we also propose a real-time visual analytics tool, which complements the imaging pipeline and the Demons registration pipeline with useful visual indicators to provide real-time feedback for immediate adjustments. We highlight the problem of deformation within the visualization pipeline for object-ordered and image-ordered rendering. Visualizations of critical information including registration forces and partial renderings of the captured data are also presented in the analytics system. We demonstrate the advantages of the algorithmic design through experimental results with both synthetically deformed datasets and actual in vivo, time-lapse tissue datasets expressing natural deformations. Remarkably, this algorithm design is for embedded implementation in intelligent biomedical imaging instrumentation with customizable circuitry.


Assuntos
Algoritmos , Microscopia Confocal/métodos , Animais , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Lasers , Camundongos , Movimento , Suínos , Língua/diagnóstico por imagem
2.
J Biomed Opt ; 17(5): 056009, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22612132

RESUMO

Oral lesions are conventionally diagnosed using white light endoscopy and histopathology. This can pose a challenge because the lesions may be difficult to visualise under white light illumination. Confocal laser endomicroscopy can be used for confocal fluorescence imaging of surface and subsurface cellular and tissue structures. To move toward real-time "virtual" biopsy of oral lesions, we interfaced an embedded computing system to a confocal laser endomicroscope to achieve a prototype three-dimensional (3-D) fluorescence imaging system. A field-programmable gated array computing platform was programmed to enable synchronization of cross-sectional image grabbing and Z-depth scanning, automate the acquisition of confocal image stacks and perform volume rendering. Fluorescence imaging of the human and murine oral cavities was carried out using the fluorescent dyes fluorescein sodium and hypericin. Volume rendering of cellular and tissue structures from the oral cavity demonstrate the potential of the system for 3-D fluorescence visualization of the oral cavity in real-time. We aim toward achieving a real-time virtual biopsy technique that can complement current diagnostic techniques and aid in targeted biopsy for better clinical outcomes.


Assuntos
Biópsia por Agulha/instrumentação , Endoscopia por Cápsula/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Microscopia Confocal/instrumentação , Neoplasias Bucais/patologia , Processamento de Sinais Assistido por Computador/instrumentação , Cirurgia Assistida por Computador/instrumentação , Animais , Sistemas Computacionais , Humanos , Aumento da Imagem/instrumentação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Interface Usuário-Computador
3.
World J Clin Oncol ; 2(4): 179-86, 2011 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-21611094

RESUMO

Laser scanning confocal endomicroscope (LSCEM) has emerged as an imaging modality which provides non-invasive, in vivo imaging of biological tissue on a microscopic scale. Scientific visualizations for LSCEM datasets captured by current imaging systems require these datasets to be fully acquired and brought to a separate rendering machine. To extend the features and capabilities of this modality, we propose a system which is capable of performing realtime visualization of LSCEM datasets. Using field-programmable gate arrays, our system performs three tasks in parallel: (1) automated control of dataset acquisition; (2) imaging-rendering system synchronization; and (3) realtime volume rendering of dynamic datasets. Through fusion of LSCEM imaging and volume rendering processes, acquired datasets can be visualized in realtime to provide an immediate perception of the image quality and biological conditions of the subject, further assisting in realtime cancer diagnosis. Subsequently, the imaging procedure can be improved for more accurate diagnosis and reduce the need for repeating the process due to unsatisfactory datasets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA