Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834029

RESUMO

The endothelial glycocalyx is a dynamic signaling surface layer that is involved in the maintenance of cellular homeostasis. The glycocalyx has a very diverse composition, with glycoproteins, proteoglycans, and glycosaminoglycans interacting with each other to form a mesh-like structure. Due to its highly interactive nature, little is known about the relative contribution of each glycocalyx constituent to its overall function. Investigating the individual roles of the glycocalyx components to cellular functions and system physiology is challenging, as the genetic manipulation of animals that target specific glycocalyx components may result in the development of a modified glycocalyx. Thus, it is crucial that genetically modified animal models for glycocalyx components are characterized and validated before the development of mechanistic studies. Among the glycocalyx components, glypican 1, which acts through eNOS-dependent mechanisms, has recently emerged as a player in cardiovascular diseases. Whether glypican 1 regulates eNOS in physiological conditions is unclear. Herein, we assessed how the deletion of glypican 1 affects the development of the pulmonary endothelial glycocalyx and the impact on eNOS activity and endothelial function. Male and female 5-9-week-old wild-type and glypican 1 knockout mice were used. Transmission electron microscopy, immunofluorescence, and immunoblotting assessed the glycocalyx structure and composition. eNOS activation and content were assessed by immunoblotting; nitric oxide production was assessed by the Griess reaction. The pulmonary phenotype was evaluated by histological signs of lung injury, in vivo measurement of lung mechanics, and pulmonary ventilation. Glypican 1 knockout mice showed a modified glycocalyx with increased glycocalyx thickness and heparan sulfate content and decreased expression of syndecan 4. These alterations were associated with decreased phosphorylation of eNOS at S1177. The production of nitric oxides was not affected by the deletion of glypican 1, and the endothelial barrier was preserved in glypican 1 knockout mice. Pulmonary compliance was decreased, and pulmonary ventilation was unaltered in glypican 1 knockout mice. Collectively, these data indicate that the deletion of glypican 1 may result in the modification of the glycocalyx without affecting basal lung endothelial function, validating this mouse model as a tool for mechanistic studies that investigate the role of glypican 1 in lung endothelial function.


Assuntos
Glicocálix , Glipicanas , Camundongos , Animais , Masculino , Feminino , Glipicanas/genética , Glipicanas/metabolismo , Glicocálix/metabolismo , Camundongos Knockout , Células Endoteliais/metabolismo , Pulmão/metabolismo
2.
Curr Top Membr ; 91: 21-41, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37080679

RESUMO

The endothelial glycocalyx is a dynamic surface layer composed of proteoglycans, glycoproteins, and glycosaminoglycans with a key role in maintaining endothelial cell homeostasis. Its functions include the regulation of endothelial barrier permeability and stability, the transduction of mechanical forces from the vascular lumen to the vessel walls, serving as a binding site to multiple growth factors and vasoactive agents, and mediating the binding of platelets and the migration of leukocytes during an inflammatory response. Many of these processes are associated with changes in intracellular calcium levels that may occur through mechanisms that alter calcium entry in the endothelium or the release of calcium from the endoplasmic reticulum. Whether the endothelial glycocalyx can regulate calcium dynamics in endothelial cells is unresolved. Interestingly, during cardiovascular disease progression, changes in calcium dynamics are observed in association with the degradation of the glycocalyx and with changes in barrier permeability and vascular reactivity. Herein, we aim to provide a summarized overview of what is known regarding the role of the glycocalyx as a regulator of endothelial barrier and vascular reactivity during homeostatic and pathological conditions and to provide a perspective on how such processes may relate to calcium dynamics in endothelial cells, exploring a possible connection between components of the glycocalyx and calcium-sensitive pathways in the endothelium.


Assuntos
Cálcio , Doenças Cardiovasculares , Humanos , Cálcio/metabolismo , Doenças Cardiovasculares/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Glicocálix/metabolismo
3.
Curr Top Membr ; 91: ix-x, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37080683
4.
Pharmacol Res ; 172: 105813, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34411733

RESUMO

BACKGROUND: Vascular dysfunction is a checkpoint to the development of hypertension. Heparan sulfate proteoglycans (HSPG) participate in nitric oxide (NO) and calcium signaling, key regulators of vascular function. The relationship between HSPG-mediated NO and calcium signaling and vascular dysfunction has not been explored. Likewise, the role of HSPG on the control of systemic blood arterial pressure is unknown. Herein, we sought to determine if the HSPG syndecan 1 and glypican 1 control systemic blood pressure and the progression of hypertension. PURPOSE: To determine the mechanisms whereby glypican 1 and syndecan 1 regulate vascular tone and contribute to the development of noradrenergic hypertension. EXPERIMENTAL APPROACH AND KEY RESULTS: By assessing systemic arterial blood pressure we observed that syndecan 1 (Sdc1-/-) and glypican 1 (Gpc1-/-) knockout mice show a similar phenotype of decreased systolic blood pressure that is presented in a striking manner in the Gpc1-/- strain. Gpc1-/- mice are also uniquely protected from a norepinephrine hypertensive challenge failing to become hypertensive. This phenotype was associated with impaired calcium-dependent vasoconstriction and altered expression of calcium-sensitive proteins including SERCA and calmodulin. In addition, Gpc1-/- distinctively showed decreased IP3R activity and increased calcium storage in the endoplasmic reticulum. CONCLUSIONS AND IMPLICATIONS: Glypican 1 is a trigger for the development of noradrenergic hypertension that acts via IP3R- and calcium-dependent signaling pathways. Glypican 1 may be a potential target for the development of new therapies for resistant hypertension or conditions where norepinephrine levels are increased.


Assuntos
Aorta Torácica/efeitos dos fármacos , Cálcio/metabolismo , Glipicanas/genética , Hipertensão , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Norepinefrina/farmacologia , Sindecana-1/genética , Animais , Aorta Torácica/metabolismo , Aorta Torácica/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/genética , Hipertensão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Cardiovasc Eng Technol ; 11(6): 655-662, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33006050

RESUMO

PURPOSE: Acute increases in hydrostatic pressure activate endothelial signaling pathways that modulate barrier function and vascular permeability. We investigated the role the glycocalyx and established mechanotransduction pathways in pressure-induced albumin transport across rat lung microvascular endothelial cells. METHODS: Rat lung microvascular endothelial cells (RLMEC) were cultured on Costar Snapwell chambers. Cell morphology was assessed using silver nitrate staining. RLMEC were exposed to zero pressure (Control) or 30 cmH2O (Pressure) for 30 or 60 min. Intracellular albumin uptake and transcellular albumin transport was quantified. Transcellular transport was reported as solute flux (Js) and an effective permeability coefficient (Pe). The removal of cell surface heparan sulfates (heparinase), inhibition of NOS (L-NAME) and reactive oxygen species (apocynin, Apo) was investigated. RESULTS: Acute increase in hydrostatic pressure augmented albumin uptake by 30-40% at 60 min and Js and Pe both increased significantly. Heparinase increased albumin uptake but attenuated transcellular transport while L-NAME attenuated both pressure-dependent albumin uptake and transport. Apo interrupted albumin uptake under both control and pressure conditions, leading to a near total lack of transcellular transport, suggesting a different mechanism and/or site of action. CONCLUSION: Pressure-dependent albumin uptake and transcellular transport is another component of endothelial mechanotransduction and associated regulation of solute flux. This novel albumin uptake and transport pathway is regulated by heparan sulfates and eNOS. Albumin uptake is sensitive to ROS. The physiological and clinical implications of this albumin transport are discussed.


Assuntos
Células Endoteliais/metabolismo , Glicocálix/metabolismo , Pulmão/irrigação sanguínea , Microvasos/metabolismo , Soroalbumina Bovina/metabolismo , Transcitose , Animais , Células Cultivadas , Heparitina Sulfato/metabolismo , Pressão Hidrostática , Cinética , Mecanotransdução Celular , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
6.
Oxid Med Cell Longev ; 2020: 2563764, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32104529

RESUMO

Norepinephrine (NE) is the naturally occurring adrenergic agonist that is released in response to hypotension, and it is routinely administered in clinical settings to treat moderate to severe hypotension that may occur during general anesthesia and shock states. Although NE has incontestable beneficial effects on blood pressure maintenance during hypotensive conditions, deleterious effects of NE on endothelial cell function may occur. In particular, the role of reactive oxygen species (ROS) and NADPH oxidase (Nox) on the deleterious effects of NE on endothelial cell function have not been fully elucidated. Therefore, we investigated the effects of NE on ROS production in rat lung microvascular endothelial cells (RLMEC) and its contribution to cell death. RLMEC were treated with NE (5 ng/mL) for 24 hours and ROS production was assessed by CellROX and DCFDA fluorescence. Nox activity was assessed by NADPH-stimulated ROS production in isolated membranes and phosphorylation of p47phox; cell death was assessed by flow cytometry and DNA fragmentation. Caspase activation was assessed by fluorescent microscopy. Nox1, Nox2, and Nox4 mRNA expression was assessed by real-time PCR. NE increased ROS production, Nox activity, p47phox phosphorylation, Nox2 and Nox4 mRNA content, caspase-3 activation, and RLMEC death. Phentolamine, an α 1-adrenoreceptor antagonist, inhibited NE-induced ROS production and Nox activity and partly inhibited cell death while ß-blockade had no effect. Apocynin and PEGSOD inhibited NE-induced caspase-3 activation and cell death while direct inhibition of caspase-3 abrogated NE-induced cell death. PEG-CAT inhibited NE-induced cell death but not caspase-3 activation. Collectively, these results indicate that NE induces RLMEC death via activation of Nox by α-adrenergic signaling and caspase-3-dependent pathways. NE has deleterious effects on RLMECs that may be important to its long-term therapeutic use.


Assuntos
Caspase 3/metabolismo , Células Endoteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , NADPH Oxidases/metabolismo , Norepinefrina/toxicidade , Acetofenonas/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Inibidores de Caspase/farmacologia , Morte Celular , Células Endoteliais/metabolismo , Pulmão/metabolismo , NADPH Oxidase 1/genética , NADPH Oxidase 1/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Fentolamina/farmacologia , Polietilenoglicóis/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/farmacologia
7.
Sci Rep ; 9(1): 6696, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040342

RESUMO

Caveolae are plasma membrane invaginations enriched with high cholesterol and sphingolipid content; they also contain caveolin proteins in their structure. Endothelial nitric oxide synthase (eNOS), an enzyme that synthesizes nitric oxide (NO) by converting L-arginine to L-citrulline, is highly concentrated in plasma membrane caveolae. Hypertension is associated with decreased NO production and impaired endothelium-dependent relaxation. Understanding the molecular mechanisms that follow hypertension is important. For this study, we hypothesized that spontaneously hypertensive rat (SHR) vessels should have a smaller number of caveolae, and that the caveolae structure should be disrupted in these vessels. This should impair the eNOS function and diminish NO bioavailability. Therefore, we aimed to investigate caveolae integrity and density in SHR aortas and mesenteric arteries and the role played by caveolae in endothelium-dependent relaxation. We have been able to show the presence of caveolae-like structures in SHR aortas and mesenteric arteries. Increased phenylephrine-induced contractile response after treatment with dextrin was related to lower NO release. In addition, impaired acetylcholine-induced endothelium-dependent relaxation could be related to decreased caveolae density in SHR vessels. The most important finding of this study was that cholesterol depletion with dextrin induced eNOS phosphorylation at Serine1177 (Ser1177) and boosted reactive oxygen species (ROS) production in normotensive rat and SHR vessels, which suggested eNOS uncoupling. Dextrin plus L-NAME or BH4 decreased ROS production in aorta and mesenteric arteries supernatant's of both SHR and normotensive groups. Human umbilical vein endothelial cells (HUVECs) treated with dextrin confirmed eNOS uncoupling, as verified by the reduced eNOS dimer/monomer ratio. BH4, L-arginine, or BH4 plus L-arginine inhibited eNOS monomerization. All these results showed that caveolae structure and integrity are essential for endothelium-dependent relaxation. Additionally, a smaller number of caveolae is associated with hypertension. Finally, caveolae disruption promotes eNOS uncoupling in normotensive and hypertensive rat vessels and in HUVECs.


Assuntos
Cavéolas/patologia , Endotélio Vascular/fisiopatologia , Hipertensão/fisiopatologia , Artérias Mesentéricas/patologia , Espécies Reativas de Oxigênio/metabolismo , Acetilcolina/farmacologia , Animais , Aorta/metabolismo , Aorta/patologia , Cavéolas/metabolismo , Cavéolas/ultraestrutura , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipertensão/metabolismo , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fenilefrina/farmacologia , Ratos Endogâmicos SHR , Ratos Wistar , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
8.
Life Sci ; 222: 22-28, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30822427

RESUMO

AIMS: Increases in hydrostatic pressure results in endothelial hyperpermeability via eNOS-dependent pathways. Ropivacaine is known to inhibit eNOS activation and to attenuate lung injury. Herein, we sought to determine if ropivacaine regulates pressure-induced lung endothelial hyperpermeability. MAIN METHODS: The effects of ropivacaine on lung permeability were assessed in two models of acute hypertension (AH): the isolated perfused lung preparation where acute increases in left atrial pressure model the hemodynamic changes of severe hypertension, and an animal model of AH induced by norepinephrine. In the IPL model, whole lung filtration coefficient (Kf) was used as the index of lung permeability; pulmonary artery pressure (Ppa), pulmonary capillary pressures (Ppc), and zonal characteristics (ZC) were measured to assess the effects of ropivacaine on hemodynamics and their relationship to Kf2/Kf1. In vivo, ropivacaine effects were investigated on indices of pulmonary edema (changes in PaO2, lung wet-to-dry ratio), changes in plasma volume and nitric oxide (NO) production. KEY FINDINGS: Ropivacaine provided robust protection from pressure-dependent barrier failure; it inhibited pressure-induced increases in Kf without affecting Ppa, Ppc or ZC. In vivo, ropivacaine prevented pressure-induced lung edema and associated hyperpermeability as evidence by maintaining PaO2, lung wet-to-dry ratio and plasma volume in levels similar to sham rats. Ropivacaine inhibited pressure-induced NO production as evidenced by decreased lung nitro-tyrosine content when compared to hypertensive lungs. SIGNIFICANCE: Collectively these data show that ropivacaine inhibits pressure-induced lung endothelial hyperpermeability and suggest that ropivacaine may be a clinically useful agent to prevent endothelial hyperpermeability when pulmonary pressure is acutely increased.


Assuntos
Permeabilidade Capilar/fisiologia , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Hipertensão/metabolismo , Edema Pulmonar/metabolismo , Ropivacaina/uso terapêutico , Doença Aguda , Anestésicos Locais/farmacologia , Anestésicos Locais/uso terapêutico , Animais , Permeabilidade Capilar/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Lesão Pulmonar/fisiopatologia , Edema Pulmonar/tratamento farmacológico , Edema Pulmonar/fisiopatologia , Ratos , Ratos Sprague-Dawley , Ropivacaina/farmacologia
9.
Biosci Rep ; 38(6)2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30355657

RESUMO

Aims: Acute increases in left ventricular end diastolic pressure (LVEDP) can induce pulmonary edema (PE). The mechanism(s) for this rapid onset edema may involve more than just increased fluid filtration. Lung endothelial cell permeability is regulated by pressure-dependent activation of nitric oxide synthase (NOS). Herein, we demonstrate that pressure-dependent NOS activation contributes to vascular failure and PE in a model of acute heart failure (AHF) caused by hypertension.Methods and results: Male Sprague-Dawley rats were anesthetized and mechanically ventilated. Acute hypertension was induced by norepinephrine (NE) infusion and resulted in an increase in LVEDP and pulmonary artery pressure (Ppa) that were associated with a rapid fall in PaO2, and increases in lung wet/dry ratio and injury scores. Heart failure (HF) lungs showed increased nitrotyrosine content and ROS levels. L-NAME pretreatment mitigated the development of PE and reduced lung ROS concentrations to sham levels. Apocynin (Apo) pretreatment inhibited PE. Addition of tetrahydrobiopterin (BH4) to AHF rats lung lysates and pretreatment of AHF rats with folic acid (FA) prevented ROS production indicating endothelial NOS (eNOS) uncoupling.Conclusion: Pressure-dependent NOS activation leads to acute endothelial hyperpermeability and rapid PE by an increase in NO and ROS in a model of AHF. Acute increases in pulmonary vascular pressure, without NOS activation, was insufficient to cause significant PE. These results suggest a clinically relevant role of endothelial mechanotransduction in the pathogenesis of AHF and further highlights the concept of active barrier failure in AHF. Therapies targetting the prevention or reversal of endothelial hyperpermeability may be a novel therapeutic strategy in AHF.


Assuntos
Insuficiência Cardíaca/enzimologia , Hipertensão Pulmonar/enzimologia , Mecanotransdução Celular , Óxido Nítrico Sintase/genética , Edema Pulmonar/enzimologia , Animais , Biopterinas/administração & dosagem , Biopterinas/análogos & derivados , Pressão Sanguínea/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Modelos Animais de Doenças , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Ácido Fólico/administração & dosagem , Insuficiência Cardíaca/fisiopatologia , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , NG-Nitroarginina Metil Éster/administração & dosagem , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Norepinefrina/efeitos adversos , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Edema Pulmonar/metabolismo , Edema Pulmonar/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Tirosina/administração & dosagem , Tirosina/análogos & derivados
10.
J Neuroimmunol ; 310: 72-81, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28778449

RESUMO

Heparanase is a heparan sulfate degrading enzyme that cleaves heparan sulfate (HS) chains present on HS proteoglycans (HSPGs), and has been well characterized for its roles in tumor metastasis and inflammation. However, heparanase is emerging as a contributing factor in the genesis and severity of a variety of neurodegenerative diseases and conditions. This is in part due to the wide variety of HSPGs on which the presence or absence of HS moieties dictates protein function. This includes growth factors, chemokines, cytokines, as well as components of the extracellular matrix (ECM) which in turn regulate leukocyte infiltration into the CNS. Roles for heparanase in stroke, Alzheimer's disease, and glioma growth have been described; roles for heparanase in other disease such as multiple sclerosis (MS) are less well established. However, given its known roles in inflammation and leukocyte infiltration, it is likely that heparanase also contributes to MS pathology. In this review, we will briefly summarize what is known about heparanase roles in the CNS, and speculate as to its potential role in regulating disease progression in MS and its animal model EAE (experimental autoimmune encephalitis), which may justify testing of heparanase inhibitors for MS treatment.


Assuntos
Sistema Nervoso Central/enzimologia , Glucuronidase/metabolismo , Esclerose Múltipla/enzimologia , Esclerose Múltipla/patologia , Animais , Inibidores Enzimáticos/uso terapêutico , Glucuronidase/antagonistas & inibidores , Humanos , Esclerose Múltipla/tratamento farmacológico
11.
Pulm Circ ; 7(3): 719-726, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28727979

RESUMO

Hypercapnic acidosis (HCA) has beneficial effects in experimental models of lung injury by attenuating inflammation and decreasing pulmonary edema. However, HCA increases pulmonary vascular pressure that will increase fluid filtration and worsen edema development. To reconcile these disparate effects, we tested the hypothesis that HCA inhibits endothelial mechanotransduction and protects against pressure-dependent increases in the whole lung filtration coefficient (Kf). Isolated perfused rat lung preparation was used to measure whole lung filtration coefficient (Kf) at two levels of left atrial pressure (PLA = 7.5 versus 15 cm H2O) and at low tidal volume (LVt) versus standard tidal volume (STVt) ventilation. The ratio of Kf2/Kf1 was used as the index of whole lung permeability. Double occlusion pressure, pulmonary artery pressure, pulmonary capillary pressures, and zonal characteristics (ZC) were measured to assess effects of HCA on hemodynamics and their relationship to Kf2/Kf1. An increase in PLA2 from 7.5 to 15 cm H2O resulted in a 4.9-fold increase in Kf2/Kf1 during LVt and a 4.8-fold increase during STVt. During LVt, HCA reduced Kf2/Kf1 by 2.7-fold and reduced STVt Kf2/Kf1 by 5.2-fold. Analysis of pulmonary hemodynamics revealed no significant differences in filtration forces in response to HCA. HCA interferes with lung vascular mechanotransduction and prevents pressure-dependent increases in whole lung filtration coefficient. These results contribute to a further understanding of the lung protective effects of HCA.

12.
Shock ; 45(4): 338-48, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26513707

RESUMO

In the United States trauma is the leading cause of mortality among those under the age of 45, claiming approximately 192,000 lives each year. Significant personal disability, lost productivity, and long-term healthcare needs are common and contribute 580 billion dollars in economic impact each year. Improving resuscitation strategies and the early acute care of trauma patients has the potential to reduce the pathological sequelae of combined exuberant inflammation and immune suppression that can co-exist, or occur temporally, and adversely affect outcomes. The endothelial and epithelial glycocalyx has emerged as an important participant in both inflammation and immunomodulation. Constituents of the glycocalyx have been used as biomarkers of injury severity and have the potential to be target(s) for therapeutic interventions aimed at immune modulation. In this review, we provide a contemporary understanding of the physiologic structure and function of the glycocalyx and its role in traumatic injury with a particular emphasis on lung injury.


Assuntos
Endotélio Vascular/imunologia , Epitélio/imunologia , Glicocálix/imunologia , Imunomodulação , Ferimentos e Lesões/imunologia , Adolescente , Adulto , Fatores Etários , Animais , Criança , Pré-Escolar , Feminino , Humanos , Inflamação/economia , Inflamação/imunologia , Inflamação/mortalidade , Inflamação/terapia , Masculino , Ressuscitação/economia , Ressuscitação/métodos , Índices de Gravidade do Trauma , Estados Unidos/epidemiologia , Ferimentos e Lesões/economia , Ferimentos e Lesões/mortalidade , Ferimentos e Lesões/terapia
13.
Am J Pathol ; 185(5): 1251-63, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25773174

RESUMO

The integrity of the lung alveolar epithelial barrier is required for the gas exchange and is important for immune regulation. Alveolar epithelial barrier is composed of flat type I cells, which make up approximately 95% of the gas-exchange surface, and cuboidal type II cells, which secrete surfactants and modulate lung immunity. p120-catenin (p120; gene symbol CTNND1) is an important component of adherens junctions of epithelial cells; however, its function in lung alveolar epithelial barrier has not been addressed in genetic models. Here, we created an inducible type II cell-specific p120-knockout mouse (p120EKO). The mutant lungs showed chronic inflammation, and the alveolar epithelial barrier was leaky to (125)I-albumin tracer compared to wild type. The mutant lungs also demonstrated marked infiltration of inflammatory cells and activation of NF-κB. Intracellular adhesion molecule 1, Toll-like receptor 4, and macrophage inflammatory protein 2 were all up-regulated. p120EKO lungs showed increased expression of the surfactant proteins Sp-B, Sp-C, and Sp-D, and displayed severe inflammation after pneumonia caused by Pseudomonas aeruginosa compared with wild type. In p120-deficient type II cell monolayers, we observed reduced transepithelial resistance compared to control, consistent with formation of defective adherens junctions. Thus, although type II cells constitute only 5% of the alveolar surface area, p120 expressed in these cells plays a critical role in regulating the innate immunity of the entire lung.


Assuntos
Células Epiteliais Alveolares/imunologia , Cateninas/imunologia , Imunidade Inata/imunologia , Pulmão/imunologia , Células Epiteliais Alveolares/metabolismo , Animais , Western Blotting , Permeabilidade Capilar/imunologia , Cateninas/metabolismo , Feminino , Imuno-Histoquímica , Inflamação/imunologia , Inflamação/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Knockout , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , delta Catenina
14.
Clin Sci (Lond) ; 129(1): 39-48, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25700020

RESUMO

The mechanisms whereby testosterone increases cardiovascular risk are not clarified. However, oxidative stress and inflammation seem to be determinants. Herein, we sought to determine whether exogenous testosterone, at physiological levels, induces leucocyte migration, a central feature in immune and inflammatory responses and the mediating mechanisms. We hypothesized that testosterone induces leucocyte migration via NADPH oxidase (NADPHox)-driven reactive oxygen species (ROS) and cyclooxygenase (COX)-dependent mechanisms. Sixteen-week-old Wistar rats received an intraperitoneal injection (5 ml) of either testosterone (10(-7) mol/l) or saline. Rats were pre-treated with 5 ml of sodium salicylate (SS, non-selective COX inhibitor, 1.25 × 10(-3) mol/l, 1 h prior to testosterone or saline), flutamide (androgen receptor antagonist, 10(-5) mol/l), apocynin (NADPHox inhibitor, 3 × 10(-4) mol/l), N-[2-Cyclohexyloxy-4-nitrophenyl]methanesulfonamide (NS398, COX2 inhibitor, 10(-4) mol/l) or saline, 4 h before testosterone or saline administration. Leucocyte migration was assessed 24 h after testosterone administration by intravital microscopy of the mesenteric bed. Serum levels of testosterone were measured by radioimmunoassay. NADPHox activity was assessed in membrane fractions of the mesenteric bed by dihydroethidium (DHE) fluorescence and in isolated vascular smooth muscle cells (VSMC) by HPLC. NADPHox subunits and VCAM (vascular cell adhesion molecule) expression were determined by immunoblotting. Testosterone administration did not change serum levels of endogenous testosterone, but increased venular leucocyte migration to the adventia, NADPHox activity and expression (P < 0.05). These effects were blocked by flutamide. SS inhibited testosterone-induced leucocyte migration (P<0.05). Apocynin and NS398 abolished testosterone-induced leucocyte migration and NADPHox activity (P<0.05). Testosterone induces leucocyte migration via NADPHox- and COX2-dependent mechanisms and may contribute to inflammatory processes and oxidative stress in the vasculature potentially increasing cardiovascular risk.


Assuntos
Movimento Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Leucócitos/efeitos dos fármacos , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Testosterona/farmacologia , Acetofenonas/farmacologia , Androgênios/farmacologia , Animais , Western Blotting , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Injeções Intraperitoneais , Leucócitos/citologia , Leucócitos/metabolismo , Masculino , Veias Mesentéricas/citologia , Veias Mesentéricas/efeitos dos fármacos , Veias Mesentéricas/metabolismo , Microscopia de Vídeo/métodos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , NADPH Oxidases/antagonistas & inibidores , Nitrobenzenos/farmacologia , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Superóxidos/metabolismo , Testosterona/administração & dosagem
15.
BMC Anesthesiol ; 14: 57, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25097454

RESUMO

BACKGROUND: Acute lung injury (ALI) is associated with high mortality due to the lack of effective therapeutic strategies. Mechanical ventilation itself can cause ventilator-induced lung injury. Pulmonary vascular barrier function, regulated in part by Src kinase-dependent phosphorylation of caveolin-1 and intercellular adhesion molecule-1 (ICAM-1), plays a crucial role in the development of protein-/neutrophil-rich pulmonary edema, the hallmark of ALI. Amide-linked local anesthetics, such as ropivacaine, have anti-inflammatory properties in experimental ALI. We hypothesized ropivacaine may attenuate inflammation in a "double-hit" model of ALI triggered by bacterial endotoxin plus hyperinflation via inhibition of Src-dependent signaling. METHODS: C57BL/6 (WT) and ICAM-1 (-/-) mice were exposed to either nebulized normal saline (NS) or lipopolysaccharide (LPS, 10 mg) for 1 hour. An intravenous bolus of 0.33 mg/kg ropivacaine or vehicle was followed by mechanical ventilation with normal (7 ml/kg, NTV) or high tidal volume (28 ml/kg, HTV) for 2 hours. Measures of ALI (excess lung water (ELW), extravascular plasma equivalents, permeability index, myeloperoxidase activity) were assessed and lungs were homogenized for Western blot analysis of phosphorylated and total Src, ICAM-1 and caveolin-1. Additional experiments evaluated effects of ropivacaine on LPS-induced phosphorylation/expression of Src, ICAM-1 and caveolin-1 in human lung microvascular endothelial cells (HLMVEC). RESULTS: WT mice treated with LPS alone showed a 49% increase in ELW compared to control animals (p = 0.001), which was attenuated by ropivacaine (p = 0.001). HTV ventilation alone increased measures of ALI even more than LPS, an effect which was not altered by ropivacaine. LPS plus hyperinflation ("double-hit") increased all ALI parameters (ELW, EVPE, permeability index, MPO activity) by 3-4 fold compared to control, which were again decreased by ropivacaine. Western blot analyses of lung homogenates as well as HLMVEC treated in culture with LPS alone showed a reduction in Src activation/expression, as well as ICAM-1 expression and caveolin-1 phosphorylation. In ICAM-1 (-/-) mice, neither addition of LPS to HTV ventilation alone nor ropivacaine had an effect on the development of ALI. CONCLUSIONS: Ropivacaine may be a promising therapeutic agent for treating the cause of pulmonary edema by blocking inflammatory Src signaling, ICAM-1 expression, leukocyte infiltration, and vascular hyperpermeability.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Amidas/farmacologia , Anestésicos Locais/farmacologia , Quinases da Família src/antagonistas & inibidores , Lesão Pulmonar Aguda/etiologia , Animais , Caveolina 1/genética , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Molécula 1 de Adesão Intercelular/genética , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Edema Pulmonar/prevenção & controle , Ropivacaina , Transdução de Sinais/efeitos dos fármacos , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Quinases da Família src/metabolismo
16.
Am J Physiol Heart Circ Physiol ; 306(11): H1485-94, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24658017

RESUMO

Testosterone exerts both beneficial and harmful effects on the cardiovascular system. Considering that testosterone induces reactive oxygen species (ROS) generation and ROS activate cell death signaling pathways, we tested the hypothesis that testosterone induces apoptosis in vascular smooth muscle cells (VSMCs) via mitochondria-dependent ROS generation. Potential mechanisms were addressed. Cultured VSMCs were stimulated with testosterone (10(-7) mol/l) or vehicle (2-12 h) in the presence of flutamide (10(-5) mol/l), CCCP (10(-6) mol/l), mimetic manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP; 3 × 10(-5) mol/l), Z-Ile-Glu(O-ME)-Thr-Asp(O-Me) fluoromethyl ketone (Z-IETD-FMK; 10(-5) mol/l), or vehicle. ROS were determined with lucigenin and dichlorodihydrofluorescein; apoptosis, with annexin V and calcein; O2 consumption, with a Clark-type electrode, and procaspases, caspases, cytochrome c, Bax, and Bcl-2 levels by immunoblotting. Testosterone induced ROS generation (relative light units/mg protein, 2 h; 162.6 ± 16 vs. 100) and procaspase-3 activation [arbitrary units, (AU), 6 h; 166.2 ± 19 vs. 100]. CCCP, MnTMPyP, and flutamide abolished these effects. Testosterone increased annexin-V fluorescence (AU, 197.6 ± 21.5 vs. 100) and decreased calcein fluorescence (AU, 34.4 ± 6.4 vs. 100), and O2 consumption (nmol O2/min, 18.6 ± 2.0 vs. 34.4 ± 3.9). Testosterone also reduced Bax-to-Bcl-2 ratio but not cytochrome-c release from mitochondria. Moreover, testosterone (6 h) induced cleavage of procaspase 8 (AU, 161.1 ± 13.5 vs. 100) and increased gene expression of Fas ligand (2(ΔΔCt), 3.6 ± 1.2 vs. 0.7 ± 0.5), and TNF-α (1.7 ± 0.4 vs. 0.3 ± 0.1). CCCP, MnTMPyP, and flutamide abolished these effects. These data indicate that testosterone induces apoptosis in VSMCs via the extrinsic apoptotic pathway with the involvement of androgen receptor activation and mitochondria-generated ROS.


Assuntos
Androgênios/farmacologia , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Testosterona/farmacologia , Antagonistas de Androgênios/farmacologia , Animais , Caspases/metabolismo , Flutamida/farmacologia , Masculino , Mitocôndrias/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
17.
Aging Dis ; 4(1): 38-49, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23423545

RESUMO

Aging is a major risk factor for cardiovascular diseases, one of the main world-wide causes of death. Several structural and functional changes occur in the cardiovascular system during the aging process and the mechanisms involved in such alterations are yet to be completely described. BK channels are transmembrane proteins that play a key role in many physiological processes, including regulation of vascular tone. In vascular smooth muscle cells, BK opening and the consequent efflux of potassium (K(+)) leads to membrane hyperpolarization, which is followed by the closure of voltage-dependent Ca(2+) channels, reduction of Ca(2+) entry and vasodilatation. BK regulates nitric oxide-mediated vasodilatation and thus is crucial for normal endothelial function. Herein we will briefly review general structural properties of BK and focus on their function in the cardiovascular system emphasizing their role in cardiovascular aging and diseases.

18.
Steroids ; 78(3): 341-6, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23261957

RESUMO

OBJECTIVE: The increased risk of cardiovascular diseases in postmenopausal women has been linked to the decrease in plasma estrogen levels. Preparation of conjugate equine estrogens (CEE) is one of the most routinely used hormone therapy in postmenopausal women. However, studies on the vascular effects of CEE are still sparse and the mechanism of action is not completely elucidated. In this context, we have determined the effects of CEE in the vascular oxidative stress observed in ovariectomyzed (OVX) spontaneously hypertensive rats (SHR). Mechanisms by which CEE interferes with redox-sensitive pathways and endothelial function were also determined. RESULTS: Aortas from OVX rats exhibited increased generation of reactive oxygen species (ROS), NADPH oxidase activity and reduced catalase protein expression, compared to aortas from sham SHR. Endothelium-intact aortic rings from OVX were hyperreactive to NE when compared to Sham aortas. This hyperreactivity was corrected by superoxide dismutase (SOD), catalase, and endothelium removal. Treatment of OVX-SHR with CEE reduced vascular ROS generation, NADPH oxidase activity, enhanced SOD and catalase expression and also corrected the NE-hyperreactivity in aortic rings from OVX-SHR. CONCLUSION: Our study indicates a potential benefit of CEE therapy through a mechanism that involves reduction in oxidative stress, improving endothelial function in OVX hypertensive rats.


Assuntos
Aorta/efeitos dos fármacos , Estrogênios Conjugados (USP)/farmacologia , Hipertensão/tratamento farmacológico , Ovariectomia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Animais , Aorta/metabolismo , Catalase/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Cavalos , Humanos , Hipertensão/metabolismo , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Técnicas de Cultura de Tecidos
19.
Hypertension ; 59(6): 1263-71, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22566500

RESUMO

Testosterone has been implicated in vascular remodeling associated with hypertension. Molecular mechanisms underlying this are elusive, but oxidative stress may be important. We hypothesized that testosterone stimulates generation of reactive oxygen species (ROS) and migration of vascular smooth muscle cells (VSMCs), with enhanced effects in cells from spontaneously hypertensive rats (SHRs). The mechanisms (genomic and nongenomic) whereby testosterone induces ROS generation and the role of c-Src, a regulator of redox-sensitive migration, were determined. VSMCs from male Wistar-Kyoto rats and SHRs were stimulated with testosterone (10(-7) mol/L, 0-120 minutes). Testosterone increased ROS generation, assessed by dihydroethidium fluorescence and lucigenin-enhanced chemiluminescence (30 minutes [SHR] and 60 minutes [both strains]). Flutamide (androgen receptor antagonist) and actinomycin D (gene transcription inhibitor) diminished ROS production (60 minutes). Testosterone increased Nox1 and Nox4 mRNA levels and p47phox protein expression, determined by real-time PCR and immunoblotting, respectively. Flutamide, actinomycin D, and cycloheximide (protein synthesis inhibitor) diminished testosterone effects on p47phox. c-Src phosphorylation was observed at 30 minutes (SHR) and 120 minutes (Wistar-Kyoto rat). Testosterone-induced ROS generation was repressed by 3-(4-chlorophenyl) 1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-day]pyrimidin-4-amine (c-Src inhibitor) in SHRs and reduced by apocynin (antioxidant/NADPH oxidase inhibitor) in both strains. Testosterone stimulated VSMCs migration, assessed by the wound healing technique, with greater effects in SHRs. Flutamide, apocynin, and 3-(4-chlorophenyl) 1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-day]pyrimidin-4-amine blocked testosterone-induced VSMCs migration in both strains. Our study demonstrates that testosterone induces VSMCs migration via NADPH oxidase-derived ROS and c-Src-dependent pathways by genomic and nongenomic mechanisms, which are differentially regulated in VSMCs from Wistar-Kyoto rats and SHRs.


Assuntos
Movimento Celular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , NADPH Oxidases/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Testosterona/farmacologia , Antagonistas de Androgênios/farmacologia , Androgênios/farmacologia , Animais , Células Cultivadas , Cicloeximida/farmacologia , Dactinomicina/farmacologia , Flutamida/farmacologia , Immunoblotting , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , NADPH Oxidase 4 , NADPH Oxidases/genética , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Proto-Oncogênicas pp60(c-src)/antagonistas & inibidores , Pirimidinas/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Hypertension ; 56(3): 453-62, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20696983

RESUMO

Arterial calcification, common in vascular diseases, involves vascular smooth muscle cell (VSMC) transformation to an osteoblast phenotype. Clinical studies suggest that magnesium may prevent this, but mechanisms are unclear. We assessed whether increasing magnesium levels reduce VSMC calcification and differentiation and questioned the role of the Mg(2+) transporter, transient receptor potential melastatin (TRPM)7 cation channels in this process. Rat VSMCs were exposed to calcification medium in the absence and presence of magnesium (2.0 to 3.0 mmol/L) or 2-aminoethoxy-diphenylborate (2-APB) (TRPM7 inhibitor). VSMCs from mice with genetically low (MgL) or high-normal (MgH) [Mg(2+)](i) were also studied. Calcification was assessed by von Kossa staining. Expression of osteocalcin, osteopontin, bone morphogenetic protein (BMP)-2, BMP-4, BMP-7, and matrix Gla protein and activity of TRPM7 (cytosol:membrane translocation) were determined by immunoblotting. Calcification medium induced osteogenic differentiation, reduced matrix Gla protein content, and increased expression of the sodium-dependent cotransporter Pit-1. Magnesium prevented calcification and decreased osteocalcin expression and BMP-2 activity and increased expression of calcification inhibitors, osteopontin and matrix Gla protein. TRPM 7 activation was decreased by calcification medium, an effect reversed by magnesium. 2-APB recapitulated the VSMC osteoblastic phenotype in VSMCs. Osteocalcin was increased by calcification medium in VSMCs and intact vessels from MgL but not MgH, whereas osteopontin was increased in MgH, but not in MgL mice. Magnesium negatively regulates vascular calcification and osteogenic differentiation through increased/restored TRPM7 activity and increased expression of anticalcification proteins, including osteopontin, BMP-7, and matrix Gla protein. New molecular insights are provided whereby magnesium could protect against VSMC calcification.


Assuntos
Calcinose/metabolismo , Diferenciação Celular/fisiologia , Magnésio/farmacologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Canais de Cátion TRPM/metabolismo , Análise de Variância , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Camundongos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Osteocalcina/metabolismo , Osteopontina/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...