Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glycobiology ; 32(12): 1137-1152, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-35871410

RESUMO

The fungal cell wall is necessary for survival as it serves a barrier for physical protection. Therefore, glycosyltransferases responsible for the synthesis of cell wall polysaccharides may be suitable targets for drug development. Mannose is a monosaccharide that is commonly found in sugar chains in the walls of fungi. Mannose residues are present in fungal-type galactomannan, O-glycans, N-glycans, glycosylphosphatidylinositol anchors, and glycosyl inositol phosphorylceramides in Aspergillus fumigatus. Three genes that are homologous to α-(1 â†’ 2)-mannosyltransferase genes and belong to the glycosyltransferase family 15 were found in the A. fumigatus strain, Af293/A1163, genome: cmsA/ktr4, cmsB/ktr7, and mnt1. It is reported that the mutant ∆mnt1 strain exhibited a wide range of properties that included high temperature and drug sensitivity, reduced conidia formation, leakage at the hyphal tips, and attenuation of virulence. However, it is unclear whether Mnt1 is a bona fide α-(1 â†’ 2)-mannosyltransferase and which mannose residues are synthesized by Mnt1 in vivo. In this study, we elucidated the structure of the Mnt1 reaction product, the structure of O-glycan in the Δmnt1 strain. In addition, the length of N-glycans attached to invertase was evaluated in the Δmnt1 strain. The results indicated that Mnt1 functioned as an α-(1 â†’ 2)-mannosyltransferase involved in the elongation of N-glycans and synthesis of the second mannose residue of O-glycans. The widespread abnormal phenotype caused by the disruption of the mnt1 gene is the combined result of the loss of mannose residues from O-glycans and N-glycans. We also clarified the enzymatic properties and substrate specificity of Mnt1 based on its predicted protein structure.


Assuntos
Aspergillus fumigatus , Manosiltransferases , Manosiltransferases/genética , Manosiltransferases/metabolismo , Aspergillus fumigatus/genética , Manose/química , Polissacarídeos/genética , Polissacarídeos/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Glicosiltransferases/metabolismo
2.
mSphere ; 5(1)2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941812

RESUMO

The pathogenic fungus Aspergillus fumigatus contains galactomannans localized on the surface layer of its cell walls, which are involved in various biological processes. Galactomannans comprise α-(1→2)-/α-(1→6)-mannan and ß-(1→5)-/ß-(1→6)-galactofuranosyl chains. We previously revealed that GfsA is a ß-galactofuranoside ß-(1→5)-galactofuranosyltransferase involved in the biosynthesis of ß-(1→5)-galactofuranosyl chains. In this study, we clarified the biosynthesis of ß-(1→5)-galactofuranosyl chains in A. fumigatus Two paralogs exist within A. fumigatus: GfsB and GfsC. We show that GfsB and GfsC, in addition to GfsA, are ß-galactofuranoside ß-(1→5)-galactofuranosyltransferases by biochemical and genetic analyses. GfsA, GfsB, and GfsC can synthesize ß-(1→5)-galactofuranosyl oligomers at up to lengths of 7, 3, and 5 galactofuranoses within an established in vitro highly efficient assay of galactofuranosyltransferase activity. Structural analyses of galactomannans extracted from ΔgfsB, ΔgfsC, ΔgfsAC, and ΔgfsABC strains revealed that GfsA and GfsC synthesized all ß-(1→5)-galactofuranosyl residues of fungal-type and O-mannose-type galactomannans and that GfsB exhibited limited function in A. fumigatus The loss of ß-(1→5)-galactofuranosyl residues decreased the hyphal growth rate and conidium formation ability and increased the abnormal hyphal branching structure and cell surface hydrophobicity, but this loss is dispensable for sensitivity to antifungal agents and virulence toward immunocompromised mice.IMPORTANCE ß-(1→5)-Galactofuranosyl residues are widely distributed in the subphylum Pezizomycotina of the phylum Ascomycota. Pezizomycotina includes many plant and animal pathogens. Although the structure of ß-(1→5)-galactofuranosyl residues of galactomannans in filamentous fungi was discovered long ago, it remains unclear which enzyme is responsible for biosynthesis of this glycan. Fungal cell wall formation processes are complicated, and information concerning glycosyltransferases is essential for understanding them. In this study, we showed that GfsA and GfsC are responsible for the biosynthesis of all ß-(1→5)-galactofuranosyl residues of fungal-type and O-mannose-type galactomannans. The data presented here indicate that ß-(1→5)-galactofuranosyl residues are involved in cell growth, conidiation, polarity, and cell surface hydrophobicity. Our new understanding of ß-(1→5)-galactofuranosyl residue biosynthesis provides important novel insights into the formation of the complex cell wall structure and the virulence of the members of the subphylum Pezizomycotina.


Assuntos
Aspergillus fumigatus/enzimologia , Mananas/biossíntese , Mananas/química , Manose/química , Animais , Aspergillus fumigatus/genética , Parede Celular/química , Parede Celular/metabolismo , Galactose/análogos & derivados , Glicosiltransferases/metabolismo , Hifas , Manose/biossíntese , Camundongos , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...