Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 17(6)2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36001983

RESUMO

Damage to the hyaline cartilage of the joint surface and osteochondral fractures are key factors leading to the development of osteoarthritis in racehorses, representing a significant cause of racehorse retirement. To tissue-engineer an osteochondral unit that is suitable for joint repair, incorporation of a zone of calcified cartilage should be considered so as to mimic itsin vivocounterpart. To date, equine mesenchymal stem cells (eMSCs) have been reported to have multilineage differentiation potential. Yet the generation of a zone of calcified cartilage using eMSCs has not been reported. This work is an initial attempt to generate a zone of calcified cartilage using eMSCs as the single source of cells and collagen as the scaffolding material. Main advantages of using eMSCs over equine deep zone chondrocytes for the generation of a zone of calcified cartilage include no donor site morbidity and their ease of expansion in culture. Initially, we fabricated cartilage-like tissues and bone-like tissuesin vitroby differentiating eMSCs toward chondrogenic and osteogenic lineages for 21 d, respectively. We then aggregated the cartilage-like and bone-like tissues together with a layer of undifferentiated eMSCs-collagen gel in between to generate a 3-layer osteochondral unit. A zone of calcified cartilage was found between the cartilage-like and bone-like layers after a 14-day culture in chondrogenic differentiation medium. These results provide a solution toward tissue engineering of equine osteochondral units with interfacial zone without using chondrocytes harvested from the deep zone of healthy articular cartilage, and contribute to the future development of osteochondral tissue engineering strategies for human cartilage injuries in the long run.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Animais , Diferenciação Celular , Condrócitos , Condrogênese , Colágeno/metabolismo , Cavalos , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais
2.
Adv Healthc Mater ; 4(1): 99-112, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24846571

RESUMO

Intervertebral disc degeneration is an important clinical problem but existing treatments have significant drawbacks. The ability to bioengineer the entire spinal motion segment (SMS) offers hope for better motion preservation strategies but is extremely challenging. Here, fabrication of a multicomponent SMS construct with complex hierarchical organization from mesenchymal stem cells and collagen-based biomaterials, using a module-based integrative approach, is reported. The construct consists of two osteochondral subunits, a nucleus pulposus (NP-)-like core and a multi-lamellae annulus fibrosus (AF-)-like component. Chondrogenic medium is crucial for stabilizing the osteochondral subunits, which are shown to allow passive nutrient diffusion, while cyclic compression is necessary for better fiber matrix organization. Cells adhere, survive, and interact with the NP-like core. Cyclic torsional loading stimulates cell alignment in the AF-like lamellae and the number of lamellae affects the mechanical properties of the construct. This work represents an important milestone in SMS tissue engineering and provides a 3D model for studying tissue maturation and functional remodeling.


Assuntos
Materiais Biocompatíveis/química , Colágeno/química , Implantes Experimentais , Células-Tronco Mesenquimais/metabolismo , Coluna Vertebral , Engenharia Tecidual/métodos , Animais , Adesão Celular , Sobrevivência Celular , Degeneração do Disco Intervertebral/cirurgia , Coelhos
3.
Tissue Eng Part A ; 17(5-6): 777-88, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20964578

RESUMO

Mesenchymal stem cell (MSC)-based engineering is promising for cartilage repair. However, the compositional mechanical relationship of the engineered structures has not been extensively studied, given the importance of such relationship in native cartilage tissues. In this study, a novel human MSC-collagen microsphere system was used to study the compositional mechanical relationship during in vitro chondrogenic differentiation using histological and biochemical methods and a microplate compression assay. The mechanical property was found positively correlating with newly deposited cartilage-relevant matrices, glycosaminoglycan, and type II collagen, and with the collagen crosslinker density, in agreement with the presence of thick collagen bundles upon structural characterization. On the other hand, the mechanical property negatively correlates with type I collagen and total collagen, suggesting that the initial collagen matrix scaffold of the microsphere system was being remodeled by the differentiating human MSCs. This study also demonstrated the application of a simple, sensitive, and nondestructive tool for monitoring the progression of chondrogenic differentiation of MSCs in tissue-engineered constructs and therefore contributes to future development of novel cartilage repair strategies.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Colágeno/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Microesferas , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Colágeno Tipo II/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/ultraestrutura , Pessoa de Meia-Idade , Ratos , Estatísticas não Paramétricas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...