Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Reprod ; 34(9): 1621-1631, 2019 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-31398257

RESUMO

STUDY QUESTION: Is it possible to differentiate primary human testicular platelet-derived growth factor receptor alpha positive (PDGFRα+) cells into functional Leydig cells? SUMMARY ANSWER: Although human testicular PDGFRα+ cells are multipotent and are capable of differentiating into steroidogenic cells with Leydig cell characteristics, they are not able to produce testosterone after differentiation. WHAT IS KNOWN ALREADY: In rodents, stem Leydig cells (SLCs) that have been identified and isolated using the marker PDGFRα can give rise to adult testosterone-producing Leydig cells after appropriate differentiation in vitro. Although PDGFRα+ cells have also been identified in human testicular tissue, so far there is no evidence that these cells are true human SLCs that can differentiate into functional Leydig cells in vitro or in vivo. STUDY DESIGN, SIZE, DURATION: We isolated testicular cells enriched for interstitial cells from frozen-thawed fragments of testicular tissue from four human donors. Depending on the obtained cell number, PDGFRα+-sorted cells of three to four donors were exposed to differentiation conditions in vitro to stimulate development into adipocytes, osteocytes, chondrocytes or into Leydig cells. We compared their cell characteristics with cells directly after sorting and cells in propagation conditions. To investigate their differentiation potential in vivo, PDGFRα+-sorted cells were transplanted in the testis of 12 luteinizing hormone receptor-knockout (LuRKO) mice of which 6 mice received immunosuppression treatment. An additional six mice did not receive cell transplantation and were used as a control. PARTICIPANTS/MATERIALS, SETTING, METHODS: Human testicular interstitial cells were cultured to Passage 3 and FACS sorted for HLA-A,B,C+/CD34-/PDGFRα+. We examined their mesenchymal stromal cell (MSC) membrane protein expression by FACS analyses. Furthermore, we investigated lineage-specific staining and gene expression after MSC trilineage differentiation. For the differentiation into Leydig cells, PDGFRα+-sorted cells were cultured in either proliferation or differentiation medium for 28 days, after which they were stimulated either with or without hCG, forskolin or dbcAMP for 24 h to examine the increase in gene expression of steroidogenic enzymes using qPCR. In addition, testosterone, androstenedione and progesterone levels were measured in the culture medium. We also transplanted human PDGFRα+-sorted testicular interstitial cells into the testis of LuRKO mice. Serum was collected at several time points after transplantation, and testosterone was measured. Twenty weeks after transplantation testes were collected for histological examination. MAIN RESULTS AND THE ROLE OF CHANCE: From primary cultured human testicular interstitial cells at Passage 3, we could obtain a population of HLA-A,B,C+/CD34-/PDGFRα+ cells by FACS. The sorted cells showed characteristics of MSC and were able to differentiate into adipocytes, chondrocytes and osteocytes. Upon directed differentiation into Leydig cells in vitro, we observed a significant increase in the expression of HSD3B2 and INSL3. After 24 h stimulation with forskolin or dbcAMP, a significantly increased expression of STAR and CYP11A1 was observed. The cells already expressed HSD17B3 and CYP17A1 before differentiation but the expression of these genes were not significantly increased after differentiation and stimulation. Testosterone levels could not be detected in the medium in any of the stimulation conditions, but after stimulation with forskolin or dbcAMP, androstenedione and progesterone were detected in culture medium. After transplantation of the human cells into the testes of LuRKO mice, no significant increase in serum testosterone levels was found compared to the controls. Also, no human cells were identified in the interstitium of mice testes 20 weeks after transplantation. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: This study was performed using tissue from only four donors because of limitations in donor material. Because of the need of sufficient cell numbers, we first propagated cells to passage 3 before FACS of the desired cell population was performed. We cannot rule out this propagation of the cells resulted in loss of stem cell properties. WIDER IMPLICATIONS OF THE FINDINGS: A lot of information on Leydig cell development is obtained from rodent studies, while the knowledge on human Leydig cell development is very limited. Our study shows that human testicular interstitial PDGFRα+ cells have different characteristics compared to rodent testicular PDGFRα+ cells in gene expression levels of steroidogenic enzymes and potential to differentiate in adult Leydig cells under comparable culture conditions. This emphasizes the need for confirming results from rodent studies in the human situation to be able to translate this knowledge to the human conditions, to eventually contribute to improvements of testosterone replacement therapies or establishing alternative cell therapies in the future, potentially based on SLCs. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by Amsterdam UMC, location AMC, Amsterdam, the Netherlands. All authors declare no competing interests.


Assuntos
Diferenciação Celular/genética , Células Intersticiais do Testículo/metabolismo , Células-Tronco Multipotentes/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Espermatogênese/genética , Idoso , Animais , Técnicas de Cultura de Células/métodos , Células Cultivadas , Meios de Cultura , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Neoplasias da Próstata/patologia , Receptores do LH/genética , Testosterona/sangue
2.
Mol Hum Reprod ; 20(2): 155-67, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24214658

RESUMO

In contrast to mouse germ cell-derived pluripotent stem cells, the pluripotent state of human testis-derived embryonic stem cell (ESC)-like that spontaneously arise in primary testicular cell cultures remains controversial. Recent studies have shown that these cells closely resemble multipotent mesenchymal stem cells (MSCs), raising the question of their origin and designating these cell populations as multipotent human testis-derived stem cells (mhtSCs) rather than truly ESC-like cells. Here, we evaluate the origin of mhtSCs in vitro by culturing selected testicular cell types. We demonstrate that mhtSCs can be obtained equally efficiently in cultures of pure testicular somatic cells devoid of germ cells. Conversely, cultures with a purified population of germ cells/spermatogonia do not produce any mhtSCs. Based on common molecular characteristics of the somatic starting population and mhtSCs, we conclude that mhtSCs colonies originate from somatic mesenchymal progenitors present in primary testicular cell cultures and do not arise from germ cells undergoing incomplete reprogramming in vitro.


Assuntos
Linhagem da Célula , Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/citologia , Testículo/citologia , Antígenos CD/genética , Biomarcadores/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Expressão Gênica , Humanos , Imunofenotipagem , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/metabolismo , Espermatogônias/citologia , Espermatogônias/metabolismo , Testículo/metabolismo
3.
Hum Reprod ; 27(1): 210-21, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22095788

RESUMO

BACKGROUND: Spontaneous in vitro transition of undifferentiated spermatogonia into the pluripotent cell state has been achieved using neonatal and adult mouse testis tissue. In an effort to establish an analogous source of human patient-specific pluripotent stem cells, several research groups have described the derivation of embryonic stem cell-like cells from primary cultures of human testis. These cells are characterized in all studies as growing in compact colonies, expressing pluripotency-associated markers and possessing multilineage differentiation capabilities in vitro, but only one study claimed their ability to induce teratomas. This controversy initiated a debate about the pluripotent state and origin of human testis-derived ES-like cells (htES-like cells). METHODS: htES-like cell colonies were obtained from primary testicular cultures of three individuals and selectively expanded using culture conditions known to support the propagation of blastocyst-derived human embryonic stem cells (ESCs), mouse epiblast stem cells and 'naïve' human ESCs. The stem cell properties of htES-like cells were subsequently assessed by testing the expression of ESC-specific markers, differentiation abilities in vitro and in vivo, and microarray profiling. RESULTS: The expression of pluripotency-associated markers in htES-like cells and their differentiation abilities differed significantly from those of ESCs. Gene expression microarray analysis revealed that htES-like cells possess a transcriptome distinct from human ESCs and fibroblasts, but closely resembling the transcriptome of mesenchymal stem cells (MSCs). The similarity to MSCs was confirmed by detection of SSEA4/CD146 expressing cells within htES-like colonies and efficient in vitro differentiation toward three mesodermal lineages (adipogenic, osteogenic, chondrogenic). CONCLUSIONS: Taken together, these results indicate that htES-like cells, in contrast to pluripotent stem cells derived from adult mouse testis, are not pluripotent and most likely not of germ cell but of mesenchymal origin.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Mesenquimais/citologia , Testículo/citologia , Testículo/metabolismo , Animais , Blastocisto/citologia , Células da Medula Óssea/citologia , Diferenciação Celular , Linhagem da Célula , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Células-Tronco Pluripotentes/citologia , Espermatogônias/citologia
4.
Hum Reprod ; 25(1): 158-67, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19815622

RESUMO

BACKGROUND: Given the significant drawbacks of using human embryonic stem (hES) cells for regenerative medicine, the search for alternative sources of multipotent cells is ongoing. Studies in mice have shown that multipotent ES-like cells can be derived from neonatal and adult testis. Here we report the derivation of ES-like cells from adult human testis. METHODS: Testis material was donated for research by four men undergoing bilateral castration as part of prostate cancer treatment. Testicular cells were cultured using StemPro medium. Colonies that appeared sharp edged and compact were collected and subcultured under hES-specific conditions. Molecular characterization of these colonies was performed using RT-PCR and immunohistochemistry. (Epi)genetic stability was tested using bisulphite sequencing and karyotype analysis. Directed differentiation protocols in vitro were performed to investigate the potency of these cells and the cells were injected into immunocompromised mice to investigate their tumorigenicity. RESULTS: In testicular cell cultures from all four men, sharp-edged and compact colonies appeared between 3 and 8 weeks. Subcultured cells from these colonies showed alkaline phosphatase activity and expressed hES cell-specific genes (Pou5f1, Sox2, Cripto1, Dnmt3b), proteins and carbohydrate antigens (POU5F1, NANOG, SOX2 and TRA-1-60, TRA-1-81, SSEA4). These ES-like cells were able to differentiate in vitro into derivatives of all three germ layers including neural, epithelial, osteogenic, myogenic, adipocyte and pancreatic lineages. The pancreatic beta cells were able to produce insulin in response to glucose and osteogenic-differentiated cells showed deposition of phosphate and calcium, demonstrating their functional capacity. Although we observed small areas with differentiated cell types of human origin, we never observed extensive teratomas upon injection of testis-derived ES-like cells into immunocompromised mice. CONCLUSIONS: Multipotent cells can be established from adult human testis. Their easy accessibility and ethical acceptability as well as their non-tumorigenic and autogenic nature make these cells an attractive alternative to human ES cells for future stem cell therapies.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Embrionárias/citologia , Células-Tronco Multipotentes/citologia , Testículo/citologia , Idoso , Idoso de 80 Anos ou mais , Animais , Diferenciação Celular , Proliferação de Células , Células-Tronco Embrionárias/metabolismo , Humanos , Cariotipagem , Masculino , Camundongos , Pessoa de Meia-Idade , Células-Tronco Multipotentes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...