Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 20(5): 977-990, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35015927

RESUMO

We have discovered a novel bacterium, Ochrobactrum haywardense H1 (Oh H1), which is capable of efficient plant transformation. Ochrobactrum is a new host for Agrobacterium-derived vir and T-DNA-mediated transformation. Oh H1 is a unique, non-phytopathogenic species, categorized as a BSL-1 organism. We engineered Oh H1 with repurposed Agrobacterium virulence machinery and demonstrated Oh H1 can transform numerous dicot species and at least one monocot, sorghum. We generated a cysteine auxotrophic Oh H1-8 strain containing a binary vector system. Oh H1-8 produced transgenic soybean plants with an efficiency 1.6 times that of Agrobacterium strain AGL1 and 2.9 times that of LBA4404Thy-. Oh H1-8 successfully transformed several elite Corteva soybean varieties with T0 transformation frequency up to 35%. In addition to higher transformation efficiencies, Oh H1-8 generated high-quality, transgenic events with single-copy, plasmid backbone-free insertion at frequencies higher than AGL1. The SpcN selectable marker gene is excised using a heat shock-inducible excision system resulting in marker-free transgenic events. Approximately, 24.5% of the regenerated plants contained only a single copy of the transgene and contained no vector backbone. There were no statistically significant differences in yield comparing T3 null-segregant lines to wild-type controls. We have demonstrated that Oh H1-8, combined with spectinomycin selection, is an efficient, rapid, marker-free and yield-neutral transformation system for elite soybean.


Assuntos
Glycine max , Ochrobactrum , Agrobacterium tumefaciens/genética , Vetores Genéticos , Ochrobactrum/genética , Plantas Geneticamente Modificadas , Glycine max/genética , Transformação Genética
2.
Nat Commun ; 11(1): 5512, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139742

RESUMO

Bacterial Cas9 nucleases from type II CRISPR-Cas antiviral defence systems have been repurposed as genome editing tools. Although these proteins are found in many microbes, only a handful of variants are used for these applications. Here, we use bioinformatic and biochemical analyses to explore this largely uncharacterized diversity. We apply cell-free biochemical screens to assess the protospacer adjacent motif (PAM) and guide RNA (gRNA) requirements of 79 Cas9 proteins, thus identifying at least 7 distinct gRNA classes and 50 different PAM sequence requirements. PAM recognition spans the entire spectrum of T-, A-, C-, and G-rich nucleotides, from single nucleotide recognition to sequence strings longer than 4 nucleotides. Characterization of a subset of Cas9 orthologs using purified components reveals additional biochemical diversity, including both narrow and broad ranges of temperature dependence, staggered-end DNA target cleavage, and a requirement for long stretches of homology between gRNA and DNA target. Our results expand the available toolset of RNA-programmable CRISPR-associated nucleases.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Biologia Computacional , Clivagem do DNA , RNA Guia de Cinetoplastídeos/metabolismo , Homologia de Sequência do Ácido Nucleico
3.
Front Plant Sci ; 11: 1298, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983193

RESUMO

Use of the morphogenic genes Baby Boom (Bbm) and Wuschel2 (Wus2), along with new ternary constructs, has increased the genotype range and the type of explants that can be used for maize transformation. Further optimizing the expression pattern for Bbm/Wus2 has resulted in rapid maize transformation methods that are faster and applicable to a broader range of inbreds. However, expression of Bbm/Wus2 can compromise the quality of regenerated plants, leading to sterility. We reasoned excising morphogenic genes after transformation but before regeneration would increase production of fertile T0 plants. We developed a method that uses an inducible site-specific recombinase (Cre) to excise morphogenic genes. The use of developmentally regulated promoters, such as Ole, Glb1, End2, and Ltp2, to drive Cre enabled excision of morphogenic genes in early embryo development and produced excised events at a rate of 25-100%. A different strategy utilizing an excision-activated selectable marker produced excised events at a rate of 53-68%; however, the transformation frequency was lower (13-50%). The use of inducible heat shock promoters (e.g. Hsp17.7, Hsp26) to express Cre, along with improvements in tissue culture conditions and construct design, resulted in high frequencies of T0 transformation (29-69%), excision (50-97%), usable quality events (4-15%), and few escapes (non-transgenic; 14-17%) in three elite maize inbreds. Transgenic events produced by this method are free of morphogenic and marker genes.

4.
Front Plant Sci ; 11: 535, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431725

RESUMO

Modern maize hybrids often contain biotech and native traits. To-date all biotech traits have been randomly inserted in the genome. Consequently, developing hybrids with multiple traits is expensive, time-consuming, and complex. Here we report using CRISPR-Cas9 to generate a complex trait locus (CTL) to facilitate trait stacking. A CTL consists of multiple preselected sites positioned within a small well-characterized chromosomal region where trait genes are inserted. We generated individual lines, each carrying a site-specific insertion landing pad (SSILP) that was targeted to a preselected site and capable of efficiently receiving a transgene via recombinase-mediated cassette exchange. The selected sites supported consistent transgene expression and the SSILP insertion had no effect on grain yield. We demonstrated that two traits residing at different sites within a CTL can be combined via genetic recombination. CTL technology is a major step forward in the development of multi-trait maize hybrids.

5.
Nat Biotechnol ; 38(5): 579-581, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32152597

RESUMO

We created waxy corn hybrids by CRISPR-Cas9 editing of a waxy allele in 12 elite inbred maize lines, a process that was more than a year faster than conventional trait introgression using backcrossing and marker-assisted selection. Field trials at 25 locations showed that CRISPR-waxy hybrids were agronomically superior to introgressed hybrids, producing on average 5.5 bushels per acre higher yield.


Assuntos
Proteínas de Plantas/genética , Locos de Características Quantitativas , Zea mays/crescimento & desenvolvimento , Sistemas CRISPR-Cas , Produção Agrícola , Edição de Genes/métodos , Introgressão Genética , Deleção de Sequência , Zea mays/genética
6.
Proc Natl Acad Sci U S A ; 117(8): 4243-4251, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32047036

RESUMO

Host-parasite coevolution can maintain high levels of genetic diversity in traits involved in species interactions. In many systems, host traits exploited by parasites are constrained by use in other functions, leading to complex selective pressures across space and time. Here, we study genome-wide variation in the staple crop Sorghum bicolor (L.) Moench and its association with the parasitic weed Striga hermonthica (Delile) Benth., a major constraint to food security in Africa. We hypothesize that geographic selection mosaics across gradients of parasite occurrence maintain genetic diversity in sorghum landrace resistance. Suggesting a role in local adaptation to parasite pressure, multiple independent loss-of-function alleles at sorghum LOW GERMINATION STIMULANT 1 (LGS1) are broadly distributed among African landraces and geographically associated with S. hermonthica occurrence. However, low frequency of these alleles within S. hermonthica-prone regions and their absence elsewhere implicate potential trade-offs restricting their fixation. LGS1 is thought to cause resistance by changing stereochemistry of strigolactones, hormones that control plant architecture and below-ground signaling to mycorrhizae and are required to stimulate parasite germination. Consistent with trade-offs, we find signatures of balancing selection surrounding LGS1 and other candidates from analysis of genome-wide associations with parasite distribution. Experiments with CRISPR-Cas9-edited sorghum further indicate that the benefit of LGS1-mediated resistance strongly depends on parasite genotype and abiotic environment and comes at the cost of reduced photosystem gene expression. Our study demonstrates long-term maintenance of diversity in host resistance genes across smallholder agroecosystems, providing a valuable comparison to both industrial farming systems and natural communities.


Assuntos
Sorghum/genética , Striga/genética , Adaptação Fisiológica , Variação Genética , Genoma de Planta , Genômica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Daninhas/genética , Plantas Daninhas/fisiologia , Sorghum/fisiologia , Striga/fisiologia
7.
Front Plant Sci ; 10: 1209, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708936

RESUMO

Development of transgenic cell lines or organisms for industrial, agricultural, or medicinal applications involves inserting DNA into the target genome in a way that achieves efficacious transgene expression without a deleterious impact on fitness. The genomic insertion site is widely recognized as an important determinant of success. However, the effect of chromosomal location on transgene expression and fitness has not been systematically investigated in plants. Here we evaluate the importance of transgene insertion site in maize and soybean using both random and site-specific transgene integration. We have compared the relative contribution of genomic location on transgene expression levels with other factors, including cis-regulatory elements, neighboring transgenes, genetic background, and zygosity. As expected, cis-regulatory elements and the presence/absence of nearby transgene neighbors can impact transgene expression. Surprisingly, we determined not only that genomic location had the least impact on transgene expression compared to the other factors that were investigated but that the majority of insertion sites recovered supported transgene expression levels that were statistically not distinguishable. All 68 genomic sites evaluated were capable of supporting high-level transgene expression, which was also consistent across generations. Furthermore, multilocation field evaluation detected no to little decrease in agronomic performance as a result of transgene insertion at the vast majority of sites we evaluated with a single construct in five maize hybrid backgrounds.

8.
Sci Rep ; 9(1): 6729, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040331

RESUMO

CRISPR-Cas9 enabled genome engineering has great potential for improving agriculture productivity, but the possibility of unintended off-target edits has evoked some concerns. Here we employ a three-step strategy to investigate Cas9 nuclease specificity in a complex plant genome. Our approach pairs computational prediction with genome-wide biochemical off-target detection followed by validation in maize plants. Our results reveal high frequency (up to 90%) on-target editing with no evidence of off-target cleavage activity when guide RNAs were bioinformatically predicted to be specific. Predictable off-target edits were observed but only with a promiscuous guide RNA intentionally designed to validate our approach. Off-target editing can be minimized by designing guide RNAs that are different from other genomic locations by at least three mismatches in combination with at least one mismatch occurring in the PAM proximal region. With well-designed guides, genetic variation from Cas9 off-target cleavage in plants is negligible, and much less than inherent variation.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Zea mays/genética , Proteína 9 Associada à CRISPR/genética , Biologia Computacional/métodos , Variação Genética , Genoma de Planta , Melhoramento Vegetal/métodos , Plantas Geneticamente Modificadas , RNA Guia de Cinetoplastídeos , Reprodutibilidade dos Testes
9.
J Biol Chem ; 278(6): 4087-95, 2003 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-12435750

RESUMO

In the ciliate Tetrahymena thermophila, the polypeptides stored in secretory dense core granules (DCGs) are generated by proteolytic processing of precursors, and the mature products assemble as a crystal. Previous observations suggested that this maturation involves precise cleavage at distinct motifs by a small number of enzymes. To test these inferences, we analyzed the determinants for site-specific processing of pro-Grl1p (Granule lattice protein 1) by complete gene replacement with modified alleles. Contrary to the predictions of previous models, none of the component amino acids in a putative processing motif was necessary for targeted cleavage. Indeed, cleavage at a range of alternative positions near the native site was consistent with normal DCG assembly. Furthermore, substitution of other classes of processing site motifs did not perturb DCG structure or function. These results suggest that processing can be catalyzed by multiple proteases, for which substrate accessibility may be the prime determinant of site specificity. Consistent with this, inhibition of either subtilisin or cathepsin family proteases resulted in delayed processing of pro-Grl1p.


Assuntos
Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Tetrahymena thermophila/metabolismo , Sequência de Aminoácidos , Animais , Microscopia Eletrônica , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Precursores de Proteínas/química , Precursores de Proteínas/genética , Homologia de Sequência de Aminoácidos , Tetrahymena thermophila/ultraestrutura
10.
J Eukaryot Microbiol ; 49(2): 99-107, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12043965

RESUMO

To assess the utility of expressed sequence tag (EST) sequencing as a method of gene discovery in the ciliated protozoan Tetrahymena thermophila, we have sequenced either the 5' or 3' ends of 157 clones chosen at random from two cDNA libraries constructed from the mRNA of vegetatively growing cultures. Of 116 total non-redundant clones, 8.6% represented genes previously cloned in Tetrahymena. Fifty-two percent had significant identity to genes from other organisms represented in GenBank, of which 92% matched human proteins. Intriguing matches include an opioid-regulated protein, a glutamate-binding protein for an NMDA-receptor, and a stem-cell maintenance protein. Eleven-percent of the non-Tetrahymena specific matches were to genes present in humans and other mammals but not found in other model unicellular eukaryotes, including the completely sequenced Saccharomyces cerevisiae. Our data reinforce the fact that Tetrahymena is an excellent unicellular model system for studying many aspects of animal biology and is poised to become an important model system for genome-scale gene discovery and functional analysis.


Assuntos
Etiquetas de Sequências Expressas , Tetrahymena thermophila/genética , Animais , DNA Complementar/análise , DNA de Protozoário/análise , Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica/fisiologia , Biblioteca Gênica , Humanos , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...