Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Microbiol ; 108: 104095, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36088111

RESUMO

Processing, such as fresh cutting and drying, is essential to enhance profitability; therefore, to limit waste and reduce losses in fruit production such as mangoes. Metabarcoding and microbial enumeration methods were utilized to explore the structure of mango microbiota, as well as their evolution after processing. Two mango ripening stages of cv. Cogshall were selected and processed into fresh-cut pieces or dried slices. Microbiological and physicochemical parameters were monitored during product storage, in order to assess the dynamics of quantitative and qualitative variations of the microbial flora. Proteobacteria was the dominant bacterial phylum of the mango surface and accounted for 73.16%, followed by Actinobacteria (10.16%), Bacteroidetes (7.82%) and Firmicutes (6.68%). Aureobasidium and Cladosporium were the only two genera shared between all types of samples (peel surface, dried slices and mango fresh-cut). However, the bacterial genera Lactobacillus and Pantoea were the most abundant in fresh-cut mango after 14 days of storage. Ascomycota was the dominant fungal phylum in the mango surface and accounted for 90.76% of the total number of detected sequences, followed by Basidiomycota (9.21%). In total, 866 microbial genera were associated with mango surface (562 bacterial and 304 fungal). Among detected yeast genera, Saccharomyces, Candida and Malassezia prevailed in mango flesh and were replaced by Wickerhamomyces after 14 days of storage. Alpha and beta diversity analyzes revealed differences in fungal and bacterial communities on fruit peel, in fresh-cut, dried slices, and during conservation (fresh-cut and dried slices). Mango processing (washing, peeling, cutting and drying) reduced the richness and the microbial diversity (bacterial and fungal) associated to the fruit, and drying limits the development of cultivable microorganisms during storage in comparison to fresh-cuts mangoes.


Assuntos
Mangifera , Micobioma , Bactérias/genética , Manipulação de Alimentos/métodos , Mangifera/química , Árvores
2.
Foods ; 11(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35267289

RESUMO

A previous study demonstrated that the color of 4 mm mango slices is altered very slightly by drying for 5 h at 60 °C, 30% RH and 1 m/s. The objectives of this complementary study were to determine the impact of various drying procedures encountered in the drying units on color alterations of sulfite-free mango slices from heterogeneous raw material due to variable maturity degrees of mangoes. Drying procedures with various temperature/humidity/duration combinations were performed to analyze their effects on the color of natural dried mangoes according to the degree of fruit maturity. They were dried at an air speed of 1.0 m/s for 5 h according to 3 schemes: standard drying (SD) at 60 °C and 30% RH; wet drying (WD) for 1 h at 60 °C and 60% RH, followed by 4 h SD; and finally, hot drying (HD) for 4 h SD, followed by 1 h at 80 °C and 30% RH. The color of the mango slices was analyzed before and after drying. SD preserves the color of fresh mangoes very well, whatever their maturity stage. A relatively slow drying onset corresponding to WD has a highly adverse impact, which becomes greater as the degree of maturity increases. There is already significant browning on mangoes with near-optimum quality (L* = 75; H* = 92). Applying high temperature at the end of the drying procedure (HD) for 20% of the time has a more limited adverse impact with immature mangoes that are the most sensitive. Linear regressions were assessed to represent the relationships of color differences between drying schemes according to mango maturity degrees. These statistical models showed a significant increase in color degradation in the case of WD and a decrease in color differences in the case of HD with the advance in fruit maturity.

3.
Foods ; 10(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668826

RESUMO

The purpose of this study was to evaluate the impact of the harvest stage, ripening conditions and maturity on color changes of cv. 'Cogshall' and cv. 'Kent' variety mangoes during drying. A total of four harvests were undertaken, and the fruits were ripened at 20 and 35 °C for five different ripening times at each temperature. At each ripening time, mangoes were dried at 60 °C/30% RH/1.5 m/s for 5 h. A wide physico-chemical and color variability of fresh and dry pulp was created. The relationships according to the L*, H* and C* coordinates were established using mixed covariance regression models in relation to the above pre- and postharvest (preprocess) parameters. According to the L* coordinate results, browning during drying was not affected by the preprocess parameters. However, dried slices from mangoes ripened at 35 °C exhibited better retention of the initial chroma, and had a greater decrease in hue than dried slices from mangoes ripened at 20 °C. However, fresh mango color, successfully managed by the pre- and postharvest conditions, had more impact on dried mango color than the studied parameters. The preprocess parameters were effective levers for improving fresh mango color, and consequently dried mango color.

4.
J Fungi (Basel) ; 7(3)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670857

RESUMO

Fruitlet Core Rot (FCR) is a fungal disease that negatively impacts the quality of pineapple, in particular the 'Queen Victoria' cultivar. The main FCR causal agent has been identified as Fusariumananatum. This study focused on the correlation between FCR disease occurrence, fungal diversity, and environmental factors. FCR incidence and fungal species repartition patterns were spatially contextualized with specific surrounding parameters of the experimental plots. The mycobiome composition of healthy and diseased fruitlets was compared in order to search for potential fungal markers. A total of 240 pineapple fruits were sampled, and 344 fungal isolates were identified as belonging to 49 species among 17 genera. FCR symptom distribution revealed a significant gradient that correlated to that of the most abundant fungal species. The association of wind direction and the position of proximal cultivated crops sharing pathogens constituted an elevated risk of FCR incidence. Five highly represented species were assayed by Koch's postulates, and their pathogenicity was confirmed. These novel pathogens belonging to Fusariumfujikuroi and Talaromycespurpureogenus species complexes were identified, unravelling the complexity of the FCR pathosystem and the difficulty of apprehending the pathogenesis over the last several decades. This study revealed that FCR is an airborne disease characterized by a multi-partite pathosystem.

5.
Food Chem ; 327: 127060, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32454280

RESUMO

OBJECTIVES: This study set out to highlight the in vitro and in vivo antifungal activity of an Ethanolic Extract of Red Brazilian Propolis (EERBP) and identify bioactive fractions effective against Colletotrichum musae. METHODS: Active fractions were detected by the thin-layer chromatography-bioautography method and characterised by HPLC-MSn. RESULTS: The in vitro results showed that EERBP had strong antifungal properties againstC. musae (81 ± 1% inhibition at 1.6 g GAE L-1). Medicarpin, (3S)-vestitol and (3S)-neovestitol were the main compounds identified in the EERBP extract (45% of all detected peaks). Two isolated fractions displayed inhibition percentages of 35 ± 4 and 42 ± 1%, respectively, on C. musae mycelial growth compared to the EERBP extract. The biological activity of the two fractions displayed an additive effect. CONCLUSION: A further in vivo investigation revealed that EERBP is a potential natural alternative for controlling banana crown rot.


Assuntos
Antifúngicos/química , Extratos Vegetais/química , Própole/química , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Brasil , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Colletotrichum/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Própole/metabolismo , Espectrometria de Massas por Ionização por Electrospray
6.
Toxins (Basel) ; 12(5)2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455651

RESUMO

The identity of the fungi responsible for fruitlet core rot (FCR) disease in pineapple has been the subject of investigation for some time. This study describes the diversity and toxigenic potential of fungal species causing FCR in La Reunion, an island in the Indian Ocean. One-hundred-and-fifty fungal isolates were obtained from infected and healthy fruitlets on Reunion Island and exclusively correspond to two genera of fungi: Fusarium and Talaromyces. The genus Fusarium made up 79% of the isolates, including 108 F. ananatum, 10 F. oxysporum, and one F. proliferatum. The genus Talaromyces accounted for 21% of the isolated fungi, which were all Talaromyces stollii. As the isolated fungal strains are potentially mycotoxigenic, identification and quantification of mycotoxins were carried out on naturally or artificially infected diseased fruits and under in vitro cultures of potential toxigenic isolates. Fumonisins B1 and B2 (FB1-FB2) and beauvericin (BEA) were found in infected fruitlets of pineapple and in the culture media of Fusarium species. Regarding the induction of mycotoxin in vitro, F.proliferatum produced 182 mg kg⁻1 of FB1 and F. oxysporum produced 192 mg kg⁻1 of BEA. These results provide a better understanding of the causal agents of FCR and their potential risk to pineapple consumers.


Assuntos
Ananas/microbiologia , Frutas/microbiologia , Fusarium/isolamento & purificação , Doenças das Plantas/microbiologia , Talaromyces/isolamento & purificação , Depsipeptídeos/metabolismo , Fumonisinas/metabolismo , Fusarium/classificação , Fusarium/genética , Fusarium/metabolismo , Hidroxibenzoatos/metabolismo , Complexos Multienzimáticos/metabolismo , Filogenia , Talaromyces/classificação , Talaromyces/genética
7.
Front Plant Sci ; 10: 1065, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552069

RESUMO

Fruitlet core rot is one of the major postharvest disease of pineapple (Ananas comosus var. comosus). In the past, control strategies were designed to eliminate symptoms without addressing their causes or mechanisms, thus achieving only moderate success. In this study, (i) we focused on the anatomy of the fruitlets in the resistant "MD-2" and susceptible "Queen" pineapple cultivars; (ii) we identified the key role of the carpel margin in the infection process; (iii) we identified the key role of the sinuous layer of thick-walled cells in the inhibition of Fusarium ananatum colonization; and (iv) we linked the anatomy of the fruitlets with the phenolic content of cell walls. The fruitlet anatomy of the two cultivars was studied using X-ray, fluorescence, and multiphoton microscopy. Sepals and bracts were not perfectly fused with each other, allowing the pathogen to penetrate the fruit even after flowering. In fact, the fungi were found in the blossom cups of both cultivars but only became pathogenic in the flesh of the "Queen" pineapple fruit under natural conditions. The outer layer of the "MD-2" cavity was continuous with thick cell walls composed of ferulic and coumaric acids. The cell walls of the "Queen" blossom cup were less lignified at the extremities, and the outer layer was interspersed with cracks. The carpel margins were fused broadly in the "MD-2" pineapple, in contrast to the "Queen" pineapple. This blemish allows the fungus to penetrate deeper into the susceptible cultivar. In pineapple fruitlets, the hyphae of F. ananatum mainly progressed directly between cell walls into the parenchyma but never reached the vascular region. A layer of thick-walled cells, in the case of the resistant cultivar, stopped the colonization, which were probably the infralocular septal nectaries. Anatomical and histochemical observations coupled with spectral analysis of the hypodermis suggested the role of lignin deposition in the resistance to F. ananatum. The major phenolics bound to the cell walls were coumaric and ferulic acids and were found in higher amounts in the resistant cultivar postinoculation. The combination of fruitlet anatomy and lignification plays a role in the mechanism of host resistance to fruitlet core rot.

8.
J Sci Food Agric ; 99(8): 3792-3802, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30666651

RESUMO

BACKGROUND: Large improvements have been realized on the accuracy of the determination of fruit quality. The relevance of the relationship between commonly used quality descriptors and their related chemical contents was here questioned under the influence of water supply reduction and postharvest cold storage. The study relied on three analyses: (1) a correlation table between quality descriptors and compound contents, (2) principal component analysis using the selected variables to see the quality discrimination dictated by treatments; and (3) linear correlation between content and descriptors according to treatments. RESULTS: The results indicate that abiotic parameters applied on mango fruits before or after harvest can affect the relationship between a quality descriptor and the content in compounds it is related to, here between titratable acidity and organic acid content and to a lesser extent between color, represented by hue angle values, and carotenoids, possibly creating bias in the final quality determination. A stronger relation between total soluble solids and total sugar content, were observed under mild abiotic stress. CONCLUSION: Fruit growth and postharvest storage conditions, such as irrigation and cold storage, can influence the actual correspondence between the compounds contents and the descriptors used to estimate fruit quality, particularly for pulp color, sugars and acids. © 2019 Society of Chemical Industry.


Assuntos
Irrigação Agrícola/métodos , Armazenamento de Alimentos/métodos , Frutas/química , Mangifera/crescimento & desenvolvimento , Água/análise , Ácidos/análise , Carotenoides/análise , Climatério , Cor , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Mangifera/química , Mangifera/metabolismo , Extratos Vegetais/análise , Controle de Qualidade , Açúcares/análise , Água/metabolismo
9.
Fungal Biol ; 121(12): 1045-1053, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29122176

RESUMO

Fusarium ananatum causes fruitlet core rot (FCR) in pineapple (Ananas comosus var. comosus) when the fruit reaches maturity. Hidden symptoms make it difficult to assess the disease, regardless of its stage, and basic questions concerning the involvement of the phenolic compounds in response to infection remain unknown. A direct inoculation method of F. ananatum in pineapple fruitlets was developed to monitor the growth of black spots and the changes in phenolic acids and ascorbic acid concentration under controlled conditions. After inoculation, infection began with a flesh discolouration at the inoculation point and then spread in a darker shade to form a black spot. Coumaroyl-isocitric and caffeoyl-isocitric acids levels respectively showed a 150- and 200-fold increase in infected fruitlet when compared to healthy fruitlet. These hydroxycinnamic acids increased minimally in the adjacent fruitlet and remained stable in the other parts of the fruit. By contrast, sinapic acid and hydroxybenzoic acid isomers (HBA) decreased after F. ananatum inoculation in the infected fruitlet, whereas they remained stable in the adjacent and healthy fruitlets. Ascorbic acid decreased to zero in the infected fruitlet. The antifungal activity of phenolic compounds and ascorbic acid was evaluated against the mycelial growth of F. ananatum. p-Coumaric acid exhibited a total inhibition of the mycelial growth at 1000 µg g-1. Ferulic acid inhibited 64 % of mycelial growth at a concentration of 1000 µg g-1. Caffeoylquinic acid, sinapic acid, and ascorbic acid also showed significant antifungal activity, but to a lesser extent. Finally, coinoculation of the hydroxycinnamic acids with the pathogen restrains its development in the fruit. This is the first study to highlight the involvement of phenolic compounds in the pineapple FCR disease.


Assuntos
Ananas/metabolismo , Ananas/microbiologia , Antifúngicos/análise , Fusarium/crescimento & desenvolvimento , Fenóis/análise , Compostos Fitoquímicos/análise , Doenças das Plantas/microbiologia , Ácido Ascórbico/análise , Frutas/metabolismo , Frutas/microbiologia
10.
J Agric Food Chem ; 61(23): 5582-9, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23692371

RESUMO

Black leaf streak disease (BLSD), also known as black sigatoka, represents the main foliar disease in Brazilian banana plantations. In addition to photosynthetic leaf area losses and yield losses, this disease causes an alteration in the pre- and postharvest behavior of the fruit. The aim of this work was to investigate the starch metabolism of fruits during fruit ripening from plants infected with BLSD by evaluating carbohydrate content (i.e., starch, soluble sugars, oligosaccharides, amylose), phenolic compound content, phytohormones, enzymatic activities (i.e., starch phosphorylases, α- and ß-amylase), and starch granules. The results indicated that the starch metabolism in banana fruit ripening is affected by BLSD infection. Fruit from infested plots contained unusual amounts of soluble sugars in the green stage and smaller starch granules and showed a different pattern of superficial degradation. Enzymatic activities linked to starch degradation were also altered by the disease. Moreover, the levels of indole-acetic acid and phenolic compounds indicated an advanced fruit physiological age for fruits from infested plots.


Assuntos
Ascomicetos/fisiologia , Frutas/metabolismo , Musa/metabolismo , Folhas de Planta/microbiologia , Amido/metabolismo , Musa/microbiologia , Folhas de Planta/metabolismo
12.
Physiol Plant ; 133(2): 435-48, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18346078

RESUMO

Ethylene signal transduction initiates with ethylene binding at receptor proteins and terminates in a transcription cascade involving the EIN3/EIL transcription factors. Here, we have isolated four cDNAs homologs of the Arabidopsis EIN3/EIN3-like gene, MA-EILs (Musa acuminata ethylene insensitive 3-like) from banana fruit. Sequence comparison with other banana EIL gene already registered in the database led us to conclude that, at this day, at least five different genes namely MA-EIL1, MA-EIL2/AB266318, MA-EIL3/AB266319, MA-EIL4/AB266320 and AB266321 exist in banana. Phylogenetic analyses included all banana EIL genes within a same cluster consisting of rice OsEILs, a monocotyledonous plant as banana. However, MA-EIL1, MA-EIL2/AB266318, MA-EIL4/AB266320 and AB266321 on one side, and MA-EIL3/AB266319 on the other side, belong to two distant subclusters. MA-EIL mRNAs were detected in all examined banana tissues but at lower level in peel than in pulp. According to tissues, MA-EIL genes were differentially regulated by ripening and ethylene in mature green fruit and wounding in old and young leaves. MA-EIL2/AB266318 was the unique ripening- and ethylene-induced gene; MA-EIL1, MA-EIL4/Ab266320 and AB266321 genes were downregulated, while MA-EIL3/AB266319 presented an unusual pattern of expression. Interestingly, a marked change was observed mainly in MA-EIL1 and MA-EIL3/Ab266319 mRNA accumulation concomitantly with changes in ethylene responsiveness of fruit. Upon wounding, the main effect was observed in MA-EIL4/AB266320 and AB266321 mRNA levels, which presented a markedly increase in both young and old leaves, respectively. Data presented in this study suggest the importance of a transcriptionally step control in the regulation of EIL genes during banana fruit ripening.


Assuntos
Proteínas de Arabidopsis/genética , Frutas/crescimento & desenvolvimento , Frutas/genética , Regulação da Expressão Gênica de Plantas , Musa/crescimento & desenvolvimento , Musa/genética , Proteínas Nucleares/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Acetileno/farmacologia , Southern Blotting , Ciclopropanos/farmacologia , DNA Complementar/isolamento & purificação , Proteínas de Ligação a DNA , Frutas/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Dados de Sequência Molecular , Musa/efeitos dos fármacos , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...