Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rice (N Y) ; 13(1): 82, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33315140

RESUMO

BACKGROUND: Rice, the most important crop in Asia, has been cultivated in Taiwan for more than 5000 years. The landraces preserved by indigenous peoples and brought by immigrants from China hundreds of years ago exhibit large variation in morphology, implying that they comprise rich genetic resources. Breeding goals according to the preferences of farmers, consumers and government policies also alter gene pools and genetic diversity of improved varieties. To unveil how genetic diversity is affected by natural, farmers', and breeders' selections is crucial for germplasm conservation and crop improvement. RESULTS: A diversity panel of 148 rice accessions, including 47 cultivars and 59 landraces from Taiwan and 42 accessions from other countries, were genotyped by using 75 molecular markers that revealed an average of 12.7 alleles per locus with mean polymorphism information content of 0.72. These accessions could be grouped into five subpopulations corresponding to wild rice, japonica landraces, indica landraces, indica cultivars, and japonica cultivars. The genetic diversity within subpopulations was: wild rices > landraces > cultivars; and indica rice > japonica rice. Despite having less variation among cultivars, japonica landraces had greater genetic variation than indica landraces because the majority of Taiwanese japonica landraces preserved by indigenous peoples were classified as tropical japonica. Two major clusters of indica landraces were formed by phylogenetic analysis, in accordance with immigration from two origins. Genetic erosion had occurred in later japonica varieties due to a narrow selection of germplasm being incorporated into breeding programs for premium grain quality. Genetic differentiation between early and late cultivars was significant in japonica (FST = 0.3751) but not in indica (FST = 0.0045), indicating effects of different breeding goals on modern germplasm. Indigenous landraces with unique intermediate and admixed genetic backgrounds were untapped, representing valuable resources for rice breeding. CONCLUSIONS: The genetic diversity of improved rice varieties has been substantially shaped by breeding goals, leading to differentiation between indica and japonica cultivars. Taiwanese landraces with different origins possess various and unique genetic backgrounds. Taiwanese rice germplasm provides diverse genetic variation for association mapping to unveil useful genes and is a precious genetic reservoir for rice improvement.

2.
Rice (N Y) ; 9(1): 8, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26922355

RESUMO

BACKGROUND: Anthocyanin accumulates in many plant tissues or organs, in rice for example leading to red, purple red and purple phenotypes for protection from damage by biotic and abiotic stresses and for reproduction. Purple leaf, leaf sheath, stigma, pericarp, and apiculus are common in wild rice and landraces and occasionally found in modern cultivars. No gene directly conferring anthocyanin deposited in a purple leaf sheath has yet been isolated by using natural variants. An F2 population derived from ssp. japonica cv. Tainung 72 (TNG72) with purple leaf sheath (PSH) crossed with ssp. indica cv. Taichung Sen 17 (TCS17) with green leaf sheath (GSH) was utilized to isolate a gene conferring leaf sheath color. RESULTS: By positional cloning, 10-and 3-bp deletions in the R2R3 Myb domain of OsC1 were uncovered in GSH varieties TCS17 and Nipponbare, respectively. Allelic diversity, rather than gene expression levels of OsC1, might be responsible for anthocyanin accumulation. Parsimony-based analysis of genetic diversity in 50 accessions, including cultivars, landraces, and A-genome wild rice, suggests that independent mutation occurred in Asian, African, South American, and Australian species, while O. meridionalis had a divergent sequence. OsC1 was thought of as a domestication related gene, with up to 90 % reduction of genetic diversity in GSH; however, no values from three tests showed significant differences from neutral expectations, implying that OsC1 had not been subjected to recent selection. Haplotype network analysis revealed that species from different continents formed unique haplotypes with no gene flow. Two major groups of haplotypes corresponding to 10-bp deletion and other sequences were formed in Asian rice, including O. rufipogon, O. nivara and O. sativa. Introgressions of OsC1 between subspecies through natural and artificial hybridization were not rare. Because artificial and natural selection imposed admixture on rice germplasm in Taiwan, the genealogy of OsC1 might not be congruent with the current distribution of alleles through lineage diversification. CONCLUSION: OsC1 is responsible for purple leaf sheath, and much new information about OsC1 is provided e.g., new alleles, non-domestication syndrome, and incongruence of genealogy with geographic distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...