Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37111649

RESUMO

Solid dispersion of poorly soluble APIs is known to be a promising strategy to improve dissolution and oral bioavailability. To facilitate the development and commercialization of a successful solid dispersion formulation, understanding of intermolecular interactions between APIs and polymeric carriers is essential. In this work, first, we assessed the molecular interactions between various delayed-release APIs and polymeric excipients using molecular dynamics (MD) simulations, and then we formulated API solid dispersions using a hot melt extrusion (HME) technique. To assess the potential API-polymer pairs, three quantities were evaluated: (a) interaction energy between API and polymer [electrostatic (Ecoul), Lenard-Jones (ELJ), and total (Etotal)], (b) energy ratio (API-polymer/API-API), and (c) hydrogen bonding between API and polymer. The Etotal quantities corresponding to the best pairs: NPX-Eudragit L100, NaDLO-HPMC(P), DMF-HPMC(AS) and OPZ-HPMC(AS) were -143.38, -348.04, -110.42, and -269.43 kJ/mol, respectively. Using a HME experimental technique, few API-polymer pairs were successfully extruded. These extruded solid forms did not release APIs in a simulated gastric fluid (SGF) pH 1.2 environment but released them in a simulated intestinal fluid (SIF) pH 6.8 environment. The study demonstrates the compatibility between APIs and excipients, and finally suggests a potential polymeric excipient for each delayed-release API, which could facilitate the development of the solid dispersion of poorly soluble APIs for dissolution and bioavailability enhancement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...