Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105598, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159859

RESUMO

Cofactor imbalance obstructs the productivities of metabolically engineered cells. Herein, we employed a minimally perturbing system, xylose reductase and lactose (XR/lactose), to increase the levels of a pool of sugar phosphates which are connected to the biosynthesis of NAD(P)H, FAD, FMN, and ATP in Escherichia coli. The XR/lactose system could increase the amounts of the precursors of these cofactors and was tested with three different metabolically engineered cell systems (fatty alcohol biosynthesis, bioluminescence light generation, and alkane biosynthesis) with different cofactor demands. Productivities of these cells were increased 2-4-fold by the XR/lactose system. Untargeted metabolomic analysis revealed different metabolite patterns among these cells, demonstrating that only metabolites involved in relevant cofactor biosynthesis were altered. The results were also confirmed by transcriptomic analysis. Another sugar reducing system (glucose dehydrogenase) could also be used to increase fatty alcohol production but resulted in less yield enhancement than XR. This work demonstrates that the approach of increasing cellular sugar phosphates can be a generic tool to increase in vivo cofactor generation upon cellular demand for synthetic biology.


Assuntos
Engenharia Metabólica , Redes e Vias Metabólicas , Aldeído Redutase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Álcoois Graxos/metabolismo , Fermentação , Lactose/metabolismo , Engenharia Metabólica/métodos , Fosfatos Açúcares/metabolismo , Xilose/metabolismo
2.
Biotechnol J ; 17(6): e2100466, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35192744

RESUMO

Detection of cellular metabolites that are disease biomarkers is important for human healthcare monitoring and assessing prognosis and therapeutic response. Accurate and rapid detection of microbial metabolites and pathway intermediates is also crucial for the process optimization required for development of bioconversion methods using metabolically engineered cells. Various redox enzymes can generate electrons that can be employed in enzyme-based biosensors and in the detection of cellular metabolites. These reactions can directly transform target compounds into various readout signals. By incorporating engineered enzymes into enzymatic cascades, the readout signals can be improved in terms of accuracy and sensitivity. This review critically discusses selected redox enzymatic and chemoenzymatic cascades currently employed for detection of human- and microbe-related cellular metabolites including, amino acids, d-glucose, inorganic ions (pyrophosphate, phosphate, and sulfate), nitro- and halogenated phenols, NAD(P)H, fatty acids, fatty aldehyde, alkane, short chain acids, and cellular metabolites.


Assuntos
NAD , Fenóis , Humanos , Oxirredução
3.
FEBS J ; 288(10): 3246-3260, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33289305

RESUMO

Bacterial luciferase catalyzes a bioluminescent reaction by oxidizing long-chain aldehydes to acids using reduced FMN and oxygen as co-substrates. Although a flavin C4a-peroxide anion is postulated to be the intermediate reacting with aldehyde prior to light liberation, no clear identification of the protonation status of this intermediate has been reported. Here, transient kinetics, pH variation, and site-directed mutagenesis were employed to probe the protonation state of the flavin C4a-hydroperoxide in bacterial luciferase. The first observed intermediate, with a λmax of 385 nm, transformed to an intermediate with a λmax of 375 nm. Spectra of the first observed intermediate were pH-dependent, with a λmax of 385 nm at pH < 8.5 and 375 at pH > 9, correlating with a pKa of 7.7-8.1. These data are consistent with the first observed flavin C4a intermediate at pH < 8.5 being the protonated flavin C4a-hydroperoxide, which loses a proton to become an active flavin C4a-peroxide. Stopped-flow studies of His44Ala, His44Asp, and His44Asn variants showed only a single intermediate with a λmax of 385 nm at all pH values, and none of these variants generate light. These data indicate that His44 variants only form a flavin C4a-hydroperoxide, but not an active flavin C4a-peroxide, indicating an essential role for His44 in deprotonating the flavin C4a-hydroperoxide and initiating chemical catalysis. We also investigated the function of the adjacent His45; stopped-flow data and molecular dynamics simulations identify the role of this residue in binding reduced FMN.


Assuntos
Mononucleotídeo de Flavina/química , Flavina-Adenina Dinucleotídeo/química , Peróxido de Hidrogênio/química , Luciferases Bacterianas/química , Oxigênio/química , Vibrio/química , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Luciferases Bacterianas/genética , Luciferases Bacterianas/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Oxigênio/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Prótons , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Termodinâmica , Vibrio/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...