Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 50, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184720

RESUMO

Natural products possess significant therapeutic potential but remain underutilized despite advances in genomics and bioinformatics. While there are approaches to activate and upregulate natural product biosynthesis in both native and heterologous microbial strains, a comprehensive strategy to elicit production of natural products as well as a generalizable and efficient method to interrogate diverse native strains collection, remains lacking. Here, we explore a flexible and robust integrase-mediated multi-pronged activation approach to reliably perturb and globally trigger antibiotics production in actinobacteria. Across 54 actinobacterial strains, our approach yielded 124 distinct activator-strain combinations which consistently outperform wild type. Our approach expands accessible metabolite space by nearly two-fold and increases selected metabolite yields by up to >200-fold, enabling discovery of Gram-negative bioactivity in tetramic acid analogs. We envision these findings as a gateway towards a more streamlined, accelerated, and scalable strategy to unlock the full potential of Nature's chemical repertoire.


Assuntos
Actinobacteria , Produtos Biológicos , Actinomyces , Antibacterianos/farmacologia , Produtos Biológicos/farmacologia , Biologia Computacional
2.
Molecules ; 28(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37570802

RESUMO

Natural products have long been used as a source of antimicrobial agents against various microorganisms. Actinobacteria are a group of bacteria best known to produce a wide variety of bioactive secondary metabolites, including many antimicrobial agents. In this study, four actinobacterial strains found in Singapore terrestrial soil were investigated as potential sources of new antimicrobial compounds. Large-scale cultivation, chemical, and biological investigation led to the isolation of a previously undescribed tetronomycin A (1) that demonstrated inhibitory activities against both Gram-positive bacteria Staphylococcus aureus (SA) and methicillin-resistant Staphylococcus aureus (MRSA) (i.e., MIC90 of 2-4 µM and MBC90 of 9-12 µM), and several known antimicrobial compounds, namely nonactin, monactin, dinactin, 4E-deacetylchromomycin A3, chromomycin A2, soyasaponin II, lysolipin I, tetronomycin, and naphthomevalin. Tetronomycin showed a two- to six-fold increase in antibacterial activity (i.e., MIC90 and MBC90 of 1-2 µM) as compared to tetronomycin A (1), indicating the presence of an oxy-methyl group at the C-27 position is important for antibacterial activity.


Assuntos
Anti-Infecciosos , Produtos Biológicos , Staphylococcus aureus Resistente à Meticilina , Streptomycetaceae , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Singapura , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias
3.
Molecules ; 27(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36500287

RESUMO

Large scale cultivation and chemical investigation of an extract obtained from Actimonadura sp. resulted in the identification of six previously undescribed spirotetronates (pyrrolosporin B and decatromicins C-G; 7-12), along with six known congeners, namely decatromicins A-B (1-2), BE-45722B-D (3-5), and pyrrolosporin A (6). The chemical structures of compounds 1-12 were characterized via comparison with previously reported data and analysis of 1D/2D NMR and MS data. The structures of all new compounds were highly related to the spirotetronate type compounds, decatromicin and pyrrolosporin, with variations in the substituents on the pyrrole and aglycone moieties. All compounds were evaluated for antibacterial activity against the Gram-negative bacteria, Acinetobacter baumannii and Gram-positive bacteria, Staphylococcus aureus and were investigated for their cytotoxicity against the human cancer cell line A549. Of these, decatromicin B (2), BE-45722B (3), and pyrrolosporin B (7) exhibited potent antibacterial activities against both Gram-positive (MIC90 between 1-3 µM) and Gram-negative bacteria (MIC90 values ranging from 12-36 µM) with weak or no cytotoxic activity against A549 cells.


Assuntos
Policetídeos , Humanos , Policetídeos/química , Actinomadura , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana
4.
Front Chem ; 10: 1024854, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505735

RESUMO

The present study investigated the molecular phylogeny, antimicrobial and cytotoxic activities of fungal endophytes obtained from the A*STAR Natural Organism Library (NOL) and previously isolated from Sungei Buloh Wetland Reserve, Singapore. Phylogenetic analysis based on ITS2 gene suggests that these isolates belong to 46 morphotypes and are affiliated to 23 different taxa in 17 genera of the Ascomycota phylum. Colletotrichum was the most dominant fungal genus accounting for 37% of all the isolates, followed by Diaporthe (13%), Phyllosticta (10.9%) and Diplodia (8.7%). Chemical elicitation using 5-azacytidine, a DNA methyltransferase inhibitor and suberoylanilide hydroxamic acid, a histone deacetylase inhibitor resulted in an increase in the number of active strains. Bioassay-guided isolation and structural elucidation yielded pestahivin and two new analogues from Bartalinia sp. F9447. Pestahivin and its related analogues did not exhibit antibacterial activity against Staphylococcus aureus but displayed strong antifungal activities against Candida albicans and Aspergillus brasiliensis, with IC50 values ranging from 0.46 ± 0.06 to 144 ± 18 µM. Pestahivin and its two analogues furthermore exhibited cytotoxic activity against A549 and MIA PACA-2 cancer cell lines with IC50 values in the range of 0.65 ± 0.12 to 42 ± 5.2 µM. The finding from this study reinforces that chemical epigenetic induction is a promising approach for the discovery of bioactive fungal secondary metabolites encoded by cryptic gene clusters.

5.
Front Microbiol ; 13: 1012115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246293

RESUMO

Lophiotrema is a genus of ascomycetous fungi within the family Lophiotremataceae. Members of this genus have been isolated as endophytes from a wide range of host plants and also from plant debris within terrestrial and marine habitats, where they are thought to function as saprobes. Lophiotrema sp. F6932 was isolated from white mangrove (Avicennia officinalis) in Pulau Ubin Island, Singapore. Crude extracts from the fungus exhibited strong antibacterial activity, and bioassay-guided isolation and structure elucidation of bioactive constituents led to the isolation of palmarumycin C8 and a new analog palmarumycin CP30. Whole-genome sequencing analysis resulted in the identification of a putative type 1 iterative PKS (iPKS) predicated to be involved in the biosynthesis of palmarumycins. To verify the involvement of palmarumycin (PAL) gene cluster in the biosynthesis of these compounds, we employed ribonucleoprotein (RNP)-mediated CRISPR-Cas9 to induce targeted deletion of the ketosynthase (KS) domain in PAL. Double-strand breaks (DSBs) upstream and downstream of the KS domain was followed by homology-directed repair (HDR) with a hygromycin resistance cassette flanked by a 50 bp of homology on both sides of the DSBs. The resultant deletion mutants displayed completely different phenotypes compared to the wild-type strain, as they had different colony morphology and were no longer able to produce palmarumycins or melanin. This study, therefore, confirms the involvement of PAL in the biosynthesis of palmarumycins, and paves the way for implementing a similar approach in the characterization of other gene clusters of interest in this largely understudied fungal strain.

6.
Front Microbiol ; 13: 898976, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733953

RESUMO

Endophytic microorganisms are an important source of bioactive secondary metabolites. In this study, fungal endophytes obtained from A*STAR's Natural Product Library (NPL) and previously isolated from different habitats of Singapore were investigated for their diversity, antimicrobial, and cytotoxic activities. A total of 222 fungal strains were identified on the basis of sequence analysis of ITS region of the rDNA gene. The identified fungal strains belong to 59 genera distributed in 20 orders. Majority of the identified strains (99%; 219 strains) belong to the phylum Ascomycota, while two strains belonged to the phylum Basidiomycota, and only one strain was from Mucoromycota phylum. The most dominant genus was Colletotrichum accounting for 27% of all the identified strains. Chemical elicitation using 5-azacytidine and suberoylanilide hydroxamic acid (SAHA) and variation of fermentation media resulted in the discovery of more bioactive strains. Bioassay-guided isolation and structure elucidation of active constituents from three prioritized fungal strains: Lophiotrema sp. F6932, Muyocopron laterale F5912, and Colletotrichum tropicicola F10154, led to the isolation of a known compound; palmarumycin C8 and five novel compounds; palmarumycin CP30, muyocopronol A-C and tropicicolide. Tropicicolide displayed the strongest antifungal activity against Aspergillus fumigatus with an IC50 value of 1.8 µg/ml but with a weaker activity against the Candida albicans presenting an IC50 of 7.1 µg/ml. Palmarumycin C8 revealed the best antiproliferative activity with IC50 values of 1.1 and 2.1 µg/ml against MIA PaCa-2 and PANC-1 cells, respectively.

7.
Molecules ; 28(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36615295

RESUMO

Thiopeptides are macrocyclic natural products with potent bioactivity. Nine new natural thiopeptides (1−9) were obtained from a Nonomuraea jiangxiensis isolated from a terrestrial soil sample collected in Singapore. Even though some of these compounds were previously synthesized or isolated from engineered strains, herein we report the unprecedented isolation of these thiopeptides from a native Nonomuraea jiangxiensis. A comparison with the literature and a detailed analysis of the NMR and HRMS of compounds 1−9 was conducted to assign their chemical structures. The structures of all new compounds were highly related to the thiopeptide antibiotics GE2270, with variations in the substituents on the thiazole and amino acid moieties. Thiopeptides 1−9 exhibited a potent antimicrobial activity against the Gram-positive bacteria, Staphylococcus aureus with MIC90 values ranging from 2 µM to 11 µM. In addition, all compounds were investigated for their cytotoxicity against the human cancer cell line A549, none of the compounds were cytotoxic.


Assuntos
Actinomycetales , Peptídeos , Humanos , Peptídeos/química , Actinomycetales/metabolismo , Tiazóis/química , Antibacterianos/química
8.
Microb Cell Fact ; 19(1): 3, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31906943

RESUMO

Using an established CRISPR-Cas mediated genome editing technique for streptomycetes, we explored the combinatorial biosynthesis potential of the auroramycin biosynthetic gene cluster in Streptomyces roseosporous. Auroramycin is a potent anti-MRSA polyene macrolactam. In addition, auroramycin has antifungal activities, which is unique among structurally similar polyene macrolactams, such as incednine and silvalactam. In this work, we employed different engineering strategies to target glycosylation and acylation biosynthetic machineries within its recently elucidated biosynthetic pathway. Auroramycin analogs with variations in C-, N- methylation, hydroxylation and extender units incorporation were produced and characterized. By comparing the bioactivity profiles of five of these analogs, we determined that unique disaccharide motif of auroramycin is essential for its antimicrobial bioactivity. We further demonstrated that C-methylation of the 3, 5-epi-lemonose unit, which is unique among structurally similar polyene macrolactams, is key to its antifungal activity.


Assuntos
Antibacterianos/biossíntese , Antifúngicos/química , Vias Biossintéticas/genética , Engenharia Metabólica/métodos , Streptomyces/genética , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Sistemas CRISPR-Cas , Edição de Genes/métodos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Polienos/química , Streptomyces/metabolismo
10.
PLoS One ; 14(6): e0218189, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31181115

RESUMO

In this study, we report antifungal activity of auroramycin against Candida albicans, Candida tropicalis, and Cryptococcus neoformans. Auroramycin, a potent antimicrobial doubly glycosylated 24-membered polyene macrolactam, was previously isolated and characterized, following CRISPR-Cas9 mediated activation of a silent polyketide synthase biosynthetic gene cluster in Streptomyces rosesporous NRRL 15998. Chemogenomic profiling of auroramycin in yeast has linked its antifungal bioactivity to vacuolar transport and membrane organization. This was verified by disruption of vacuolar structure and membrane integrity of yeast cells with auroramycin treatment. Addition of salt but not sorbitol to the medium rescued the growth of auroramycin-treated yeast cells suggesting that auroramycin causes ionic stress. Furthermore, auroramycin caused hyperpolarization of the yeast plasma membrane and displayed a synergistic interaction with cationic hygromycin. Our data strongly suggest that auroramycin inhibits yeast cells by causing leakage of cations from the cytoplasm. Thus, auroramycin's mode-of-action is distinct from known antifungal polyenes, reinforcing the importance of natural products in the discovery of new anti-infectives.


Assuntos
Antifúngicos/farmacologia , Lactamas Macrocíclicas/farmacologia , Polienos/farmacologia , Leveduras/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida tropicalis/efeitos dos fármacos , Cátions/metabolismo , Cryptococcus neoformans/efeitos dos fármacos , Citoplasma/metabolismo , Vacúolos/metabolismo
11.
Chembiochem ; 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29799651

RESUMO

Silent biosynthetic gene clusters represent a potentially rich source of new bioactive compounds. We report the discovery, characterization, and biosynthesis of a novel doubly glycosylated 24-membered polyene macrolactam from a silent biosynthetic gene cluster in Streptomyces roseosporus by using the CRISPR-Cas9 gene cluster activation strategy. Structural characterization of this polyketide, named auroramycin, revealed a rare isobutyrylmalonyl extender unit and a unique pair of amino sugars. Relative and absolute stereochemistry were determined by using a combination of spectroscopic analyses, chemical derivatization, and computational analysis. The activated gene cluster for auroramycin production was also verified by transcriptional analyses and gene deletions. Finally, auroramycin exhibited potent anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) activity towards clinical drug-resistant isolates.

12.
J Antimicrob Chemother ; 72(11): 2973-2989, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28981632

RESUMO

Alphaviruses were amongst the first arboviruses to be isolated, characterized and assigned a taxonomic status. They are globally widespread, infecting a large variety of terrestrial animals, birds, insects and even fish. Moreover, they are capable of surviving and circulating in both sylvatic and urban environments, causing considerable human morbidity and mortality. The re-emergence of Chikungunya virus (CHIKV) in almost every part of the world has caused alarm to many health agencies throughout the world. The mosquito vector for this virus, Aedes, is globally distributed in tropical and temperate regions and capable of thriving in both rural and urban landscapes, giving the opportunity for CHIKV to continue expanding into new geographical regions. Despite the importance of alphaviruses as human pathogens, there is currently no targeted antiviral treatment available for alphavirus infection. This mini-review discusses some of the major features in the replication cycle of alphaviruses, highlighting the key viral targets and host components that participate in alphavirus replication and the molecular functions that were used in drug design. Together with describing the importance of these targets, we review the various direct-acting and host-targeting inhibitors, specifically small molecules that have been discovered and developed as potential therapeutics as well as their reported in vitro and in vivo efficacies.


Assuntos
Antivirais/química , Antivirais/uso terapêutico , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/efeitos dos fármacos , Animais , Antivirais/farmacologia , Febre de Chikungunya/virologia , Vírus Chikungunya/fisiologia , Desenho de Fármacos , Descoberta de Drogas , Humanos , Camundongos , Bibliotecas de Moléculas Pequenas/química , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
13.
J Med Chem ; 60(7): 3165-3186, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28350454

RESUMO

Chikungunya virus (CHIKV) is a re-emerging vector-borne alphavirus, and there is no approved effective antiviral treatment currently available for CHIKV. We previously reported the discovery of thieno[3,2-b]pyrrole 1b that displayed good antiviral activity against CHIKV infection in vitro. However, it has a short half-life in the presence of human liver microsomes (HLMs) (T1/2 = 2.91 min). Herein, we report further optimization studies in which potential metabolically labile sites on compound 1b were removed or modified, resulting in the identification of thieno[3,2-b]pyrrole 20 and pyrrolo[2,3-d]thiazole 23c possessing up to 17-fold increase in metabolic half-lives in HLMs and good in vivo pharmacokinetic properties. Compound 20 not only attenuated viral RNA production and displayed broad-spectrum antiviral activity against other alphaviruses and CHIKV isolates but also exhibited limited cytotoxic liability (CC50 > 100 µM). These studies have identified two compounds that have the potential for further development as antiviral drugs against CHIKV infection.


Assuntos
Antivirais/química , Antivirais/farmacologia , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/efeitos dos fármacos , Desenho de Fármacos , Pirróis/química , Pirróis/farmacologia , Animais , Antivirais/metabolismo , Antivirais/farmacocinética , Vírus Chikungunya/genética , Vírus Chikungunya/fisiologia , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo , Pirróis/metabolismo , Pirróis/farmacocinética , RNA Viral/genética
14.
J Med Chem ; 58(23): 9196-213, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26540338

RESUMO

Chikungunya virus (CHIKV) is a re-emerging vector-borne alphavirus and is transmitted to humans by Aedes mosquitoes. Despite the re-emergence of CHIKV as an epidemic threat, there is no approved effective antiviral treatment currently available for CHIKV. Herein, we report the synthesis and structure-activity relationship studies of a class of thieno[3,2-b]pyrroles and the discovery of a trisubstituted thieno[3,2-b]pyrrole 5-carboxamide 15c that exhibits potent inhibitory activity against in vitro CHIKV infection. Compound 15c displayed low micromolar activity (EC50 value of ca. 2 µM) and limited cytotoxic liability (CC50 > 100 µM) therefore furnishing a selectivity index of greater than 32. Notably, 15c not only controlled viral RNA production, but efficiently inhibited the expression of CHIKV nsP1, nsP3, capsid, and E2 proteins at a concentration as low as 2.5 µM. More importantly, 15c also demonstrated broad spectrum antiviral activity against other clinically important alphaviruses such as O'nyong-nyong virus and Sindbis virus.


Assuntos
Antivirais/química , Antivirais/farmacologia , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/efeitos dos fármacos , Pirróis/química , Pirróis/farmacologia , Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Células HEK293 , Humanos , Inibidores da Síntese de Ácido Nucleico/química , Inibidores da Síntese de Ácido Nucleico/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , RNA Viral/genética , Relação Estrutura-Atividade , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...