Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Cycle ; : 1-12, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984667

RESUMO

Colorectal cancer (CRC) is the third most common cancer worldwide. In the United States alone, CRC was responsible for approximately 52,550 deaths in 2023, with an estimated 153,020 new cases. CRC presents with synchronous peritoneal spread in 5-10% of patients, and up to 20-50% of patients with recurrent disease will develop metachronous colorectal cancer peritoneal metastatic (CRC-PM) disease. Eradication of the tumor, tumor margins and microscopic residual disease is paramount, as microscopic residual disease is associated with local recurrences, with 5-year survival rates of less than 35%. The success of resection and reduction of residual disease depends on the accuracy with which cancer cells and normal tissue can be intra-operatively distinguished. Fluorescence Molecular Imaging (IFMI) and tumor-targeted contrast agents represent a promising approach for intraoperative detection and surgical intervention. Proper target selection, the development of scalable imaging agents and enhanced real-time tumor and tumor microenvironment imaging are critical to enabling enhanced surgical resection. LGR5 (leucine-rich repeat-containing G-protein-coupled receptor 5), a colonic crypt stem cell marker and the receptor for the R-spondins (RSPO) in the Wnt signaling pathway, is also expressed on colorectal cancer stem cells (CSC) and on CRC tumors and metastases, suggesting it could be a useful target for imaging of CRC. However, there are numerous diverging reports on the role of LGR5 in CRC therapy and outcomes. Herein, we report on the synthesis and validation of a 37 amino acid RSPO1-mimetic peptide, termed RC18, that was specifically designed to access the R-spondin binding site of LGR5 to potentially be used for interoperative imaging of CRC-PM. The receptor-binding capabilities of the RC18 indicate that direct interactions with LGR5 neither significantly increased LGR5 signaling nor blocked RSPO1 binding and signal transduction, suggesting that the RSPO1-mimetic is functionally inert, making it an attractive contrast agent for intraoperative CRC-PM imaging.

2.
Bioorg Med Chem ; 82: 117214, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36913882

RESUMO

Retinoic acid (RA, 1), an oxidized form of vitamin A, binds to retinoic acid receptors (RAR) and retinoid X receptors (RXR) to regulate gene expression and has important functions such as cell proliferation and differentiation. Synthetic ligands regarding RAR and RXR have been devised for the treatment of various diseases, particularly promyelocytic leukemia, but their side effects have led to the development of new, less toxic therapeutic agents. Fenretinide (4-HPR, 2), an aminophenol derivative of RA, exhibits potent antiproliferative activity without binding to RAR/RXR, but its clinical trial was discontinued due to side effects of impaired dark adaptation. Assuming that the cyclohexene ring of 4-HPR is the cause of the side effects, methylaminophenol was discovered through structure-activity relationship research, and p-dodecylaminophenol (p-DDAP, 3), which has no side effects or toxicity and is effective against a wide range of cancers, was developed. Therefore, we thought that introducing the motif carboxylic acid found in retinoids, could potentially enhance the anti-proliferative effects. Introducing chain terminal carboxylic functionality into potent p-alkylaminophenols significantly attenuated antiproliferative potencies, while a similar structural modification of weakly potent p-acylaminophenols enhanced growth inhibitory potencies. However, conversion of the carboxylic acid moieties to their methyl esters completely abolished the cell growth inhibitory effects of both series. Insertion of a carboxylic acid moiety, which is important for binding to RA receptors, abolishes the action of p-alkylaminophenols, but enhances the action of p-acylaminophenols. This suggests that the amido functionality may be important for the growth inhibitory effects of the carboxylic acids.


Assuntos
Antineoplásicos , Fenretinida , Retinoides/farmacologia , Retinoides/química , Aminofenóis , Antineoplásicos/farmacologia , Tretinoína/farmacologia , Receptores X de Retinoides
3.
Org Biomol Chem ; 19(36): 7843-7854, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34346472

RESUMO

Targeting protein - protein interactions (PPIs) has emerged as an important area of discovery for anticancer therapeutic development. In the case of phospho-dependent PPIs, such as the polo-like kinase 1 (Plk1) polo-box domain (PBD), a phosphorylated protein residue can provide high-affinity recognition and binding to target protein hot spots. Developing antagonists of the Plk1 PBD can be particularly challenging if one relies solely on interactions within and proximal to the phospho-binding pocket. Fortunately, the affinity of phospho-dependent PPI antagonists can be significantly enhanced by taking advantage of interactions in both the phospho-binding site and hidden "cryptic" pockets that may be revealed on ligand binding. In our current paper, we describe the design and synthesis of macrocyclic peptide mimetics directed against the Plk1 PBD, which are characterized by a new glutamic acid analog that simultaneously serves as a ring-closing junction that provides accesses to a cryptic binding pocket, while at the same time achieving proper orientation of a phosphothreonine (pT) residue for optimal interaction in the signature phospho-binding pocket. Macrocycles prepared with this new amino acid analog introduce additional hydrogen-bonding interactions not found in the open-chain linear parent peptide. It is noteworthy that this new glutamic acid-based amino acid analog represents the first example of extremely high affinity ligands where access to the cryptic pocket from the pT-2 position is made possible with a residue that is not based on histidine. The concepts employed in the design and synthesis of these new macrocyclic peptide mimetics should be useful for further studies directed against the Plk1 PBD and potentially for ligands directed against other PPI targets.


Assuntos
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Quinase 1 Polo-Like
4.
J Med Chem ; 64(13): 9365-9380, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34161728

RESUMO

Cyclic peptide diversity has been broadened by elaborating the A3-macrocyclization to include various di-amino carboxylate components with different Nε-amine substituents. Triple-bond reduction provided new cyclic peptide macrocycles with Z-olefin and completely saturated structures. Moreover, cyclic azasulfurylpeptides were prepared by exchanging the propargylglycine (Pra) component for an amino sulfamide surrogate. Examination of such diversity-oriented methods on potent cyclic azapeptide modulators of the cluster of differentiation 36 receptor (CD36) identified the importance of the triple bond as well as the Nε-allyl lysine and azaPra residues for high CD36 binding affinity. Cyclic azapeptides which engaged CD36 effectively reduced pro-inflammatory nitric oxide and downstream cytokine and chemokine production in macrophages stimulated with a Toll-like receptor-2 agonist. Studying the triple bond and amine components in the multiple-component A3-macrocyclization has given a diverse array of macrocycles and pertinent information to guide the development of ideal CD36 modulators with biomedical potential for curbing macrophage-driven inflammation.


Assuntos
Antígenos CD36/metabolismo , Compostos Macrocíclicos/farmacologia , Peptídeos Cíclicos/farmacologia , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Humanos , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...