Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-507250

RESUMO

COVID-19 vaccines used in humans are highly effective in limiting disease and death caused by the SARS-CoV-2 virus, yet improved vaccines that provide greater protection at mucosal surfaces, which could reduce break-through infections and subsequent transmission, are still needed. Here we show that intranasal (I.N.) vaccination with the receptor binding domain of Spike antigen of SARS-CoV-2 (S-RBD) in combination with the mucosal adjuvant mastoparan-7 improved systemic T cell responses compared to an equivalent dose of antigen delivered by the sub-cutaneous (S.C.) route, adjuvanted by either M7 or the gold-standard adjuvant, alum. T cell phenotypes induced by I.N. vaccine administration included enhanced polyfunctionality (combined IFN-{gamma} and TNF expression) and greater numbers of T central memory (TCM) cells. These phenotypes were T cell-intrinsic and could be recalled in the lungs and/or brachial LNs upon antigen challenge after adoptive T cell transfer to naive recipients. Furthermore, mucosal vaccination induced antibody responses that were similarly effective in neutralizing the binding of the parental strain of S-RBD to its ACE2 receptor, but showed greater cross-neutralizing capacity against multiple variants of concern (VOC), compared to S.C. vaccination. These results highlight the role of nasal vaccine administration in imprinting an immune profile associated with long-term T cell retention and diversified neutralizing antibody responses, which could be applied to improve vaccines for COVID-19 and other infectious diseases.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21255594

RESUMO

Lung inflammation is a hallmark of Coronavirus disease 2019 (COVID-19) in severely ill patients and the pathophysiology of disease is thought to be immune-mediated. Mast cells (MCs) are polyfunctional immune cells present in the airways, where they respond to certain viruses and allergens, often promoting inflammation. We observed widespread degranulation of MCs during acute and unresolved airway inflammation in SARS-CoV-2-infected mice and non-human primates. In humans, transcriptional changes in patients requiring oxygen supplementation also implicated cells with a MC phenotype. MC activation in humans was confirmed, through detection of the MC-specific protease, chymase, levels of which were significantly correlated with disease severity. These results support the association of MC activation with severe COVID-19, suggesting potential strategies for intervention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...