Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Regul Homeost Agents ; 29(1): 115-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25864747

RESUMO

The proteasome inhibitor bortezomib is an antineoplastic drug mainly used for the treatment of multiple myeloma (MM). Despite its effectiveness, bortezomib clinical use is often limited by the onset of peripheral neuropathy (BiPN). To better understand the mechanisms of BiPN several rat and mice models have been proposed, but no studies in MM-bearing animals allowing to test the antitumor activity of the selected schedules and the role of MM by itself in peripheral nervous system damage have been reported to date. Here, we carried out a study using immunodeficient C.B-17/Prkdcscid (SCID) mice injected with RPMI8266 human MM cells and treated with bortezomib 1 mg/kg once a week for five weeks. Animals were assessed with neurophysiological, behavioral and pathological methods and tumor volume measurement was performed along the study. At the end of the study BiPN was evident in bortezomib-treated animals, and this neurotoxic effect was evident using a schedule able to effectively prevent tumor growth. However, neurophysiological and pathological evidence of MM induced peripheral nervous system damage was also reported. This model based on MM-bearing animals is more reliable in the reproduction of the clinical setting and it is, therefore, more suitable than the previously reported models of BiPN to study its pathogenesis. Moreover, it represents an optimal model to test the efficacy of neuroprotective agents and at the same time their non-interference with bortezomib antineoplastic activity.


Assuntos
Antineoplásicos/efeitos adversos , Ácidos Borônicos/efeitos adversos , Mieloma Múltiplo/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Pirazinas/efeitos adversos , Animais , Bortezomib , Modelos Animais de Doenças , Humanos , Camundongos SCID , Mieloma Múltiplo/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Neurosci Lett ; 596: 90-107, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25459280

RESUMO

Cisplatin, oxaliplatin, paclitaxel, vincristine and bortezomib are some of the most effective drugs successfully employed (alone or in combinations) as first-line treatment for common cancers. However they often caused severe peripheral neurotoxicity and neuropathic pain. Structural deficits in Dorsal Root Ganglia and sensory nerves caused symptoms as sensory loss, paresthesia, dysaesthesia and numbness that result in patient' suffering and also limit the life-saving therapy. Several scientists have explored the various mechanisms involved in the onset of chemotherapy-related peripheral neurotoxicity identifying molecular targets useful for the development of selected neuroprotective strategies. Dorsal Root Ganglia sensory neurons, satellite cells, Schwann cells, as well as neuronal and glial cells in the spinal cord, are the preferential sites in which chemotherapy neurotoxicity occurs. DNA damage, alterations in cellular system repairs, mitochondria changes, increased intracellular reactive oxygen species, alterations in ion channels, glutamate signalling, MAP-kinases and nociceptors ectopic activation are among the events that trigger the onset of peripheral neurotoxicity and neuropathic pain. In the present work we review the role of the main players in determining the pathogenesis of anticancer drugs-induced peripheral neuropathy.


Assuntos
Antineoplásicos/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Dano ao DNA , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/patologia , Gânglios Espinais/fisiopatologia , Ácido Glutâmico/metabolismo , Humanos , Canais Iônicos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Estresse Oxidativo , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/fisiopatologia , Células Satélites Perineuronais/efeitos dos fármacos , Células Satélites Perineuronais/fisiologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/fisiologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais
3.
Biomed Res Int ; 2014: 180428, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24877063

RESUMO

To investigate neurochemical changes associated with bortezomib-induced painful peripheral neuropathy (PN), we examined the effects of a single-dose intravenous administration of bortezomib and a well-established "chronic" schedule in a rat model of bortezomib-induced PN. The TRPV1 channel and sensory neuropeptides CGRP and substance P (SP) were studied in L4-L5 dorsal root ganglia (DRGs), spinal cord, and sciatic nerve. Behavioral measures, performed at the end of the chronic bortezomib treatment, confirmed a reduction of mechanical nociceptive threshold, whereas no difference occurred in thermal withdrawal latency. Western blot analysis showed a relative increase of TRPV1 in DRG and spinal cord after both acute and chronic bortezomib administration. Reverse transcriptase-polymerase chain reaction revealed a decrease of TRPV1 and CGRP mRNA relative levels after chronic treatment. Immunohistochemistry showed that in the DRGs, TRPV1-, CGRP-, and SP-immunoreactive neurons were mostly small- and medium-sized and the proportion of TRPV1- and CGRP-labeled neurons increased after treatment. A bortezomib-induced increase in density of TRPV1- and CGRP-immunoreactive innervation in the dorsal horn was also observed. Our findings show that bortezomib-treatment selectively affects subsets of DRG neurons likely involved in the processing of nociceptive stimuli and that neurochemical changes may contribute to development and persistence of pain in bortezomib-induced PN.


Assuntos
Comportamento Animal/efeitos dos fármacos , Ácidos Borônicos/efeitos adversos , Peptídeo Relacionado com Gene de Calcitonina/biossíntese , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas do Tecido Nervoso/biossíntese , Doenças do Sistema Nervoso Periférico/metabolismo , Pirazinas/efeitos adversos , Nervo Isquiático/metabolismo , Medula Espinal/metabolismo , Substância P/biossíntese , Canais de Cátion TRPV/biossíntese , Animais , Ácidos Borônicos/farmacologia , Bortezomib , Modelos Animais de Doenças , Feminino , Gânglios Espinais/patologia , Nociceptividade/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/patologia , Pirazinas/farmacologia , Ratos , Ratos Wistar , Nervo Isquiático/patologia , Medula Espinal/patologia
4.
Cancer Chemother Pharmacol ; 68(4): 1001-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21327681

RESUMO

PURPOSE: Cisplatin is one of the most effective cytotoxic agents in the treatment of solid malignancies, but its use is limited by several side effects. Among them, peripheral neurotoxicity can be dose limiting. A liposomal formulation of cisplatin, Lipoplatin™, was developed to reduce the systemic toxicity of cisplatin but without preventing its efficacy. The aim of this study was to use an animal model to establish, through a multimodal approach, whether chronic treatment with two different schedules of Lipoplatin™, selected within the range of its anticancer effective dose, is less neurotoxic than cisplatin administration. METHODS: Female Wistar rats were treated intraperitoneally with cisplatin at a dose of 4 mg/kg or with Lipoplatin™ at doses delivering 12 or 24 mg/kg of cisplatin once weekly for 4 weeks. General toxicity was assessed by daily observation, body weight change, hematological and blood chemistry analysis, and histopathology of liver and kidney. The onset of peripheral neurotoxicity was assessed by measuring tail nerve conduction velocity (NCV), morphological and morphometric analysis of dorsal root ganglia (DRG), and morphological analysis of the sciatic nerve. RESULTS: Cisplatin induced a statistically significant reduction in body weight, the development of renal failure, and impairment in NCV with pathological alterations in the DRG and sciatic nerve. By contrast, Lipoplatin™ was markedly less nephrotoxic, and no significant weight gain reduction was observed in animals treated with both doses of the drug. Moreover, the lowest dose induced less severe damage to the peripheral nervous system with a moderate decrease in NCV and mild pathological alterations in DRG and the sciatic nerve. CONCLUSIONS: The results suggest that Lipoplatin™ 12 mg/kg is less neurotoxic than cisplatin 4 mg/kg, thus opening up the possibility of using this new formulation in future studies where its anticancer activity and the peripheral neurotoxicity will be assessed in parallel.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Síndromes Neurotóxicas/etiologia , Animais , Antineoplásicos/administração & dosagem , Peso Corporal/efeitos dos fármacos , Cisplatino/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Ratos , Ratos Wistar , Testes de Toxicidade
5.
Exp Neurol ; 226(2): 301-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20832406

RESUMO

Cisplatin, paclitaxel and bortezomib belong to some of the most effective families of chemotherapy drugs for solid and haematological cancers. Epothilones represent a new family of very promising antitubulin agents. The clinical use of all these drugs is limited by their severe peripheral neurotoxicity. Several in vivo rat models have reproduced the characteristics of the peripheral neurotoxicity of these drugs. However, since only a very limited number of cancer types can be studied in immunocompetent rats, these animal models do not represent an effective way to evaluate, at the same time, the antineoplastic activity and the neurotoxic effects of the anticancer compounds. In this study, we characterized the neurophysiological impairment induced by chronic chemotherapy treatment in BALB/c mice, a strain suitable for assessing the activity of anticancer treatments. At the end of a 4-week period of treatment with cisplatin, paclitaxel, epothilone-B or bortezomib, sensory and sensory/motor nerve conduction velocities (NCV) were determined in the caudal and digital nerves and dorsal root ganglia (DRG) and sciatic nerves were collected for histopathological analysis. The electrophysiological studies revealed that all the compounds caused a statistically significant reduction in the caudal NCV, while impairment of the digital NCV was less severe. This functional damage was confirmed by the histopathological observations evidencing axonal degeneration in the sciatic nerve induced by all the drugs associated with pathological changes in DRG induced only by cisplatin and bortezomib. These results confirm the possibility to use our models to combine the study of the antineoplastic activity of anticancer drugs and of their toxic effects on the peripheral nervous system in the BALB/c mouse strain.


Assuntos
Antineoplásicos/efeitos adversos , Modelos Animais de Doenças , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/patologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Análise de Variância , Animais , Peso Corporal/efeitos dos fármacos , Ácidos Borônicos , Bortezomib , Cisplatino , Relação Dose-Resposta a Droga , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/patologia , Gânglios Espinais/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão/métodos , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Fibras Nervosas Mielinizadas/patologia , Fibras Nervosas Mielinizadas/ultraestrutura , Condução Nervosa/efeitos dos fármacos , Paclitaxel , Doenças do Sistema Nervoso Periférico/mortalidade , Pirazinas , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Nervo Isquiático/fisiopatologia , Nervo Isquiático/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...