Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 20(7): 924-933, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38942968

RESUMO

Keratinicyclins and keratinimicins are recently discovered glycopeptide antibiotics. Keratinimicins show broad-spectrum activity against Gram-positive bacteria, while keratinicyclins form a new chemotype by virtue of an unusual oxazolidinone moiety and exhibit specific antibiosis against Clostridioides difficile. Here we report the mechanism of action of keratinicyclin B (KCB). We find that steric constraints preclude KCB from binding peptidoglycan termini. Instead, KCB inhibits C. difficile growth by binding wall teichoic acids (WTAs) and interfering with cell wall remodeling. A computational model, guided by biochemical studies, provides an image of the interaction of KCB with C. difficile WTAs and shows that the same H-bonding framework used by glycopeptide antibiotics to bind peptidoglycan termini is used by KCB for interacting with WTAs. Analysis of KCB in combination with vancomycin (VAN) shows highly synergistic and specific antimicrobial activity, and that nanomolar combinations of the two drugs are sufficient for complete growth inhibition of C. difficile, while leaving common commensal strains unaffected.


Assuntos
Antibacterianos , Clostridioides difficile , Testes de Sensibilidade Microbiana , Clostridioides difficile/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Vancomicina/farmacologia , Vancomicina/química , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Ácidos Teicoicos/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano/química , Quimioterapia Combinada , Peptídeos Cíclicos , Lipopeptídeos
2.
J Am Chem Soc ; 146(11): 7313-7323, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38452252

RESUMO

DUF692 multinuclear iron oxygenases (MNIOs) are an emerging family of tailoring enzymes involved in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs). Three members, MbnB, TglH, and ChrH, have been characterized to date and shown to catalyze unusual and complex transformations. Using a co-occurrence-based bioinformatic search strategy, we recently generated a sequence similarity network of MNIO-RiPP operons that encode one or more MNIOs adjacent to a transporter. The network revealed >1000 unique gene clusters, evidence of an unexplored biosynthetic landscape. Herein, we assess an MNIO-RiPP cluster from this network that is encoded in Proteobacteria and Actinobacteria. The cluster, which we have termed mov (for methanobactin-like operon in Vibrio), encodes a 23-residue precursor peptide, two MNIOs, a RiPP recognition element, and a transporter. Using both in vivo and in vitro methods, we show that one MNIO, homologous to MbnB, installs an oxazolone-thioamide at a Thr-Cys dyad in the precursor. Subsequently, the second MNIO catalyzes N-Cα bond cleavage of the penultimate Asn to generate a C-terminally amidated peptide. This transformation expands the reaction scope of the enzyme family, marks the first example of an MNIO-catalyzed modification that does not involve Cys, and sets the stage for future exploration of other MNIO-RiPPs.


Assuntos
Imidazóis , Oligopeptídeos , Oxigenases , Processamento de Proteína Pós-Traducional , Oxigenases/genética , Peptídeos/química , Família Multigênica , Catálise
3.
ACS Chem Biol ; 18(7): 1473-1479, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37405871

RESUMO

The emergence of multidrug-resistant pathogens poses a threat to public health and requires new antimicrobial agents. As the archetypal glycopeptide antibiotic (GPA) used against drug-resistant Gram-positive pathogens, vancomycin provides a promising starting point. Peripheral alterations to the vancomycin scaffold have enabled the development of new GPAs. However, modifying the core remains challenging due to the size and complexity of this compound family. The recent successful chemoenzymatic synthesis of vancomycin suggests that such an approach can be broadly applied. Herein, we describe the expansion of chemoenzymatic strategies to encompass type II GPAs bearing all aromatic amino acids through the production of the aglycone analogue of keratinimicin A, a GPA that is 5-fold more potent than vancomycin against Clostridioides difficile. In the course of these studies, we found that the cytochrome P450 enzyme OxyBker boasts both broad substrate tolerance and remarkable selectivity in the formation of the first aryl ether cross-link on the linear peptide precursors. The X-ray crystal structure of OxyBker, determined to 2.8 Å, points to structural features that may contribute to these properties. Our results set the stage for using OxyBker broadly as a biocatalyst toward the chemoenzymatic synthesis of diverse GPA analogues.


Assuntos
Antibacterianos , Vancomicina , Vancomicina/química , Antibacterianos/química , Glicopeptídeos/química , Sistema Enzimático do Citocromo P-450/metabolismo , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...