Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 104(1): e3887, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36217822

RESUMO

Spatial capture-recapture (SCR) is now routinely used for estimating abundance and density of wildlife populations. A standard SCR model includes sub-models for the distribution of individual activity centers (ACs) and for individual detections conditional on the locations of these ACs. Both sub-models can be expressed as point processes taking place in continuous space, but there is a lack of accessible and efficient tools to fit such models in a Bayesian paradigm. Here, we describe a set of custom functions and distributions to achieve this. Our work allows for more efficient model fitting with spatial covariates on population density, offers the option to fit SCR models using the semi-complete data likelihood (SCDL) approach instead of data augmentation, and better reflects the spatially continuous detection process in SCR studies that use area searches. In addition, the SCDL approach is more efficient than data augmentation for simple SCR models while losing its advantages for more complicated models that account for spatial variation in either population density or detection. We present the model formulation, test it with simulations, quantify computational efficiency gains, and conclude with a real-life example using non-invasive genetic sampling data for an elusive large carnivore, the wolverine (Gulo gulo) in Norway.


Assuntos
Animais Selvagens , Animais , Teorema de Bayes , Probabilidade , Densidade Demográfica , Noruega
4.
Nature ; 538(7626): E1-E2, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27786205
5.
PLoS One ; 6(2): e17040, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21347228

RESUMO

BACKGROUND: Patterns that arise from an ecological process can be driven as much from the landscape over which the process is run as it is by some intrinsic properties of the process itself. The disentanglement of these effects is aided if it possible to run models of the process over artificial landscapes with controllable spatial properties. A number of different methods for the generation of so-called 'neutral landscapes' have been developed to provide just such a tool. Of these methods, a particular class that simulate fractional Brownian motion have shown particular promise. The existing methods of simulating fractional Brownian motion suffer from a number of problems however: they are often not easily generalisable to an arbitrary number of dimensions and produce outputs that can exhibit some undesirable artefacts. METHODOLOGY: We describe here an updated algorithm for the generation of neutral landscapes by fractional Brownian motion that do not display such undesirable properties. Using Monte Carlo simulation we assess the anisotropic properties of landscapes generated using the new algorithm described in this paper and compare it against a popular benchmark algorithm. CONCLUSION/SIGNIFICANCE: The results show that the existing algorithm creates landscapes with values strongly correlated in the diagonal direction and that the new algorithm presented here corrects this artefact. A number of extensions of the algorithm described here are also highlighted: we describe how the algorithm can be employed to generate landscapes that display different properties in different dimensions and how they can be combined with an environmental gradient to produce landscapes that combine environmental variation at the local and macro scales.


Assuntos
Algoritmos , Ecossistema , Modelos Teóricos , Anisotropia , Conservação dos Recursos Naturais , Fractais , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...