Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Neural Eng ; 20(3)2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37084719

RESUMO

Objective.Brain-machine interfaces (BMIs) have shown promise in extracting upper extremity movement intention from the thoughts of nonhuman primates and people with tetraplegia. Attempts to restore a user's own hand and arm function have employed functional electrical stimulation (FES), but most work has restored discrete grasps. Little is known about how well FES can control continuous finger movements. Here, we use a low-power brain-controlled functional electrical stimulation (BCFES) system to restore continuous volitional control of finger positions to a monkey with a temporarily paralyzed hand.Approach.We delivered a nerve block to the median, radial, and ulnar nerves just proximal to the elbow to simulate finger paralysis, then used a closed-loop BMI to predict finger movements the monkey was attempting to make in two tasks. The BCFES task was one-dimensional in which all fingers moved together, and we used the BMI's predictions to control FES of the monkey's finger muscles. The virtual two-finger task was two-dimensional in which the index finger moved simultaneously and independently from the middle, ring, and small fingers, and we used the BMI's predictions to control movements of virtual fingers, with no FES.Main results.In the BCFES task, the monkey improved his success rate to 83% (1.5 s median acquisition time) when using the BCFES system during temporary paralysis from 8.8% (9.5 s median acquisition time, equal to the trial timeout) when attempting to use his temporarily paralyzed hand. In one monkey performing the virtual two-finger task with no FES, we found BMI performance (task success rate and completion time) could be completely recovered following temporary paralysis by executing recalibrated feedback-intention training one time.Significance.These results suggest that BCFES can restore continuous finger function during temporary paralysis using existing low-power technologies and brain-control may not be the limiting factor in a BCFES neuroprosthesis.


Assuntos
Interfaces Cérebro-Computador , Animais , Extremidade Superior , Quadriplegia , Movimento/fisiologia , Haplorrinos , Primatas
2.
Neuromodulation ; 24(4): 672-684, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33471409

RESUMO

BACKGROUND/OBJECTIVES: The physiological mechanisms underlying the pain-modulatory effects of clinical neurostimulation therapies, such as spinal cord stimulation (SCS) and dorsal root ganglion stimulation (DRGS), are only partially understood. In this pilot prospective study, we used patient-reported outcomes (PROs) and quantitative sensory testing (QST) to investigate the physiological effects and possible mechanisms of action of SCS and DRGS therapies. MATERIALS AND METHODS: We tested 16 chronic pain patients selected for SCS and DRGS therapy, before and after treatment. PROs included pain intensity, pain-related symptoms (e.g., pain interference, pain coping, sleep interference) and disability, and general health status. QST included assessments of vibration detection theshold (VDT), pressure pain threshold (PPT) and tolerance (PPToL), temporal summation (TS), and conditioned pain modulation (CPM), at the most painful site. RESULTS: Following treatment, all participants reported significant improvements in PROs (e.g., reduced pain intensity [p < 0.001], pain-related functional impairment [or pain interference] and disability [p = 0.001 for both]; better pain coping [p = 0.03], sleep [p = 0.002]), and overall health [p = 0.005]). QST showed a significant treatment-induced increase in PPT (p = 0.002) and PPToL (p = 0.011), and a significant reduction in TS (p = 0.033) at the most painful site, but showed no effects on VDT and CPM. We detected possible associations between a few QST measures and a few PROs. Notably, higher TS was associated with increased pain interference scores at pre-treatment (r = 0.772, p = 0.009), and a reduction in TS was associated with the reduction in pain interference (r = 0.669, p = 0.034) and pain disability (r = 0.690, p = 0.027) scores with treatment. CONCLUSIONS: Our preliminary findings suggest significant clinical and therapeutic benefits associated with SCS and DRGS therapies, and the possible ability of these therapies to modulate pain processing within the central nervous system. Replication of our pilot findings in future, larger studies is necessary to characterize the physiological mechanisms of SCS and DRGS therapies.


Assuntos
Dor Crônica , Estimulação da Medula Espinal , Dor Crônica/diagnóstico , Dor Crônica/terapia , Gânglios Espinais , Humanos , Estudos Prospectivos , Medula Espinal
3.
J Neurosurg Case Lessons ; 2(3): CASE21285, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35854910

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is a U.S. Food and Drug Administration-approved therapy for medically refractory Parkinson's disease, essential tremor, and other neurological conditions. The procedure requires prolonged immobility and can result in significant patient discomfort, potentially limiting patient selection. In addition, surgical requirements necessitate avoidance of medications that may alter or suppress the patient's arousal or baseline tremor during macrostimulation testing. OBSERVATIONS: In this study, the authors describe the use of continuous spinal anesthesia with local anesthetic to manage a patient with severe back pain who was intolerant of semisupine position during stereotactic computed tomography and stage 1 of DBS placement. LESSONS: Continuous spinal anesthesia is an effective strategy to manage patients with severe back pain undergoing DBS surgery for upper extremity motor symptoms.

4.
Neuromodulation ; 22(2): 127-148, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30246905

RESUMO

OBJECTIVE: The physiological mechanisms behind the therapeutic effects of spinal cord stimulation (SCS) are only partially understood. Our aim was to perform a literature review of studies that used objective measures to characterize mechanisms of action of SCS in neuropathic pain patients. MATERIALS AND METHODS: We searched the PubMed data base to identify clinical studies that used objective measures to assess the effects of SCS in neuropathic pain. We extracted the study factors (e.g., type of measure, diagnoses, painful area[s], and SCS parameters) and outcomes from the included studies. RESULTS: We included 67 studies. Of these, 24 studies used neurophysiological measures, 14 studies used functional neuroimaging techniques, three studies used a combination of neurophysiological and functional neuroimaging techniques, 14 studies used quantitative sensory testing, and 12 studies used proteomic, vascular, and/or pedometric measures. Our findings suggest that SCS largely inhibits somatosensory processing and/or spinal nociceptive activity. Our findings also suggest that SCS modulates activity across specific regions of the central nervous system that play a prominent role in the sensory and emotional functions of pain. CONCLUSIONS: SCS appears to modulate pain via spinal and/or supraspinal mechanisms of action (e.g., pain gating, descending pain inhibition). However, to better understand the mechanisms of action of SCS, we believe that it is necessary to carry out systematic, controlled, and well-powered studies using objective patient measures. To optimize the clinical effectiveness of SCS for neuropathic pain, we also believe that it is necessary to develop and implement patient-specific approaches.


Assuntos
Neuralgia/terapia , Avaliação de Resultados em Cuidados de Saúde/métodos , Estimulação da Medula Espinal/métodos , Humanos , Neuralgia/fisiopatologia , Neurofisiologia , PubMed/estatística & dados numéricos
5.
J Clin Neurosci ; 45: 311-314, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28887076

RESUMO

The purpose of this study is to demonstrate the potential of diffusion tensor imaging (DTI) to reveal structural mechanisms underlying spinal ablative procedures, including percutaneous radiofrequency cordotomy (PRFC). PRFC is a surgical procedure that produces analgesia through focal ablation of the lateral spinothalamic tract (STT), thereby interrupting the flow of pain information from the periphery to the brain. To date, studies regarding mechanisms of analgesia after PRFC have been limited to postmortem cadaveric dissection and histology. However, with recent advances in DTI, the opportunity has arisen to study the STT non-invasively in vivo. In this technical note, an individual with successful pain relief following unilateral STT PRFC was examined using DTI, with the contralateral STT serving as an internal control. PRFC substantially reduced rostrocaudal directional DTI signal in the STT from the lesion in the cervical spinal cord through the pons and mesencephalon. Our findings confirm that focal ablation and anterograde degeneration accompany the analgesic effects of PRFC. In vivo imaging of the STT with DTI may contribute to surgical targeting for PRFC procedures, better understanding of the therapeutic and untoward effects of PRFC, and a deeper understanding of spinothalamic contributions to nociception.


Assuntos
Analgesia/métodos , Cordotomia/métodos , Imagem de Tensor de Difusão , Degeneração Neural/diagnóstico por imagem , Tratos Espinotalâmicos/diagnóstico por imagem , Idoso , Medula Cervical/patologia , Medula Cervical/cirurgia , Humanos , Masculino , Mesencéfalo/diagnóstico por imagem , Mesencéfalo/patologia , Ponte/diagnóstico por imagem , Ponte/patologia , Tratos Espinotalâmicos/patologia
12.
Am J Med ; 129(10): e249, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27671851
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...