Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 37: 107157, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34095394

RESUMO

Data published in this paper corresponds to a time-lapse ex-situ experiment aimed at analyzing the tension-tension fatigue damage in non-crimp glass-epoxy composites by multi-scale x-ray computed tomography (XCT) of the damage features and their timeline. This is then correlated with the strain fields obtained through digital image correlation (DIC). The XCT - DIC datasets by is acquired by interrupting mechanical fatigue tests at three time-steps, after the material has undergone 0 cycles, 70,000 cycles, 80,000 cycles, and 120,000 cycles. This is one of the first multi-modally correlated datasets available for these types of non-crimp glass fibre composites, which explore the structure-property relationship in a time-dependent behavior. This dataset can be used to explore glass-fibre composites microstructure under a progressive damage scheme and can be used to test and train a plethora of image processing and analysis techniques. This dataset can also be used as an attempt to model the fatigue behavior of quasi-unidirectional non-crimp fibre composites by image-based simulations.

2.
J Funct Biomater ; 9(3)2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30149507

RESUMO

Biomaterial for tissue engineering is a topic of huge progress with a recent surge in fabrication and characterization advances. Biomaterials for tissue engineering applications or as scaffolds depend on various parameters such as fabrication technology, porosity, pore size, mechanical strength, and surface available for cell attachment. To serve the function of the scaffold, the porous biomaterial should have enough mechanical strength to aid in tissue engineering. With a new manufacturing technology, we have obtained high strength materials by optimizing a few processing parameters such as pressure, temperature, and dwell time, yielding the monolith with porosity in the range of 80%⁻93%. The three-dimensional interconnectivity of the porous media through scales for the newly manufactured biomaterial has been investigated using newly developed 3D correlative and multi-modal imaging techniques. Multiscale X-ray tomography, FIB-SEM Slice & View stacking, and high-resolution STEM-EDS electronic tomography observations have been combined allowing quantification of morphological and geometrical spatial distributions of the multiscale porous network through length scales spanning from tens of microns to less than a nanometer. The spatial distribution of the wall thickness has also been investigated and its possible relationship with pore connectivity and size distribution has been studied.

3.
Langmuir ; 33(46): 13262-13271, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-28901145

RESUMO

We describe the co-electrospraying of hollow microspheres from a polycaprolactone (PCL) shell solution and various core solutions including water, cyclohexane, poly(ethylene oxide) (PEO), and polyethylene glycol (PEG), using different collectors. The morphologies of the resultant microspheres were characterized by scanning electron microscopy (SEM), confocal microscopy, and nano-X-ray computed tomography (nano-XCT). The core/shell solution miscibility played an important role in the co-electrospraying process and the formation of microsphere structures. Spherical particles were more likely to be produced from miscible combinations of core/shell solutions than from immiscible ones. Hollow PCL microspheres with a single hole in their surfaces were produced when an ethanol bath was used as the collector. The mechanism by which the core/shell structure is transformed into single-hole hollow microspheres is proposed to be primarily based on the evaporation through the shell and extraction by ethanol of the core solution and is described in detail. Additionally, we present a 3D macroscopic tubular structure composed of hollow PCL microspheres, directly assembled on a copper wire collector during co-electrospraying. SEM and nano-XCT confirm that microspheres in the 3D bulk structure remain hollow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...