Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 7(51): 84439-84452, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27806319

RESUMO

Cisplatin is an effective breast cancer drug but resistance often develops over prolonged chemotherapy. Therefore, we performed a candidate approach RNAi screen in combination with cisplatin treatment to identify molecular pathways conferring survival advantages. The screen identified ATP7A as a therapeutic target. ATP7A is a copper ATPase transporter responsible for intercellular movement and sequestering of cisplatin. Pharmaceutical replacement for ATP7A by ammonium tetrathiomolybdate (TM) enhanced cisplatin treatment in breast cancer cells. Allograft and xenograft models in athymic nude mice treated with cisplatin/TM exhibited retarded tumor growth, reduced accumulation of cancer stem cells and decreased cell proliferation as compared to mono-treatment with cisplatin or TM. Cisplatin/TM treatment of cisplatin-resistant tumors reduced ATP7A protein levels, attenuated cisplatin sequestering by ATP7A, increased nuclear availability of cisplatin, and subsequently enhanced DNA damage and apoptosis. Microarray analysis of gene ontology pathways that responded uniquely to cisplatin/TM double treatment depicted changes in cell cycle regulation, specifically in the G1/S transition. These findings offer the potential to combat platinum-resistant tumors and sensitize patients to conventional breast cancer treatment by identifying and targeting the resistant tumors' unique molecular adaptations.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cisplatino/farmacologia , ATPases Transportadoras de Cobre/antagonistas & inibidores , Molibdênio/farmacologia , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/farmacologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cisplatino/administração & dosagem , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Sinergismo Farmacológico , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos Nus , Molibdênio/administração & dosagem , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Interferência de RNA , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
2.
J Biol Chem ; 289(35): 24202-14, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25006250

RESUMO

Drug resistance and cancer metastasis are two major problems in cancer research. During a course of therapeutic treatment in Brca1-associated tumors, we found that breast cancer stem cells (CSCs) exhibit an intrinsic ability to metastasize and acquire drug resistance through distinct signaling pathways. Microarray analysis indicated that the cytoskeletal remodeling pathway was differentially regulated in CSCs, and this was further evidenced by the inhibitory role of reagents that impair this pathway in the motility of cancer cells. We showed that cisplatin treatment, although initially inhibiting cancer growth, preventing metastasis through blocking cytoskeletal remodeling, and retarding CSC motility, eventually led to drug resistance associated with a marked increase in the number of CSCs. This event was at least partially attributed to the activation of PI3K signaling, and it could be significantly inhibited by co-treatment with rapamycin. These results provide strong evidence that cytoskeletal rearrangement and PI3K/AKT signaling play distinct roles in mediating CSC mobility and viability, respectively, and blocking both pathways synergistically may inhibit primary and metastatic cancer growth.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Divisão Celular/efeitos dos fármacos , Cisplatino/farmacologia , Inibidores Enzimáticos/farmacologia , Genes BRCA1 , Metástase Neoplásica/prevenção & controle , Inibidores de Fosfoinositídeo-3 Quinase , Animais , Resistencia a Medicamentos Antineoplásicos , Citometria de Fluxo , Humanos , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Análise de Sequência com Séries de Oligonucleotídeos
3.
Breast Cancer Res ; 16(3): R67, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24962108

RESUMO

INTRODUCTION: Breast cancer is a devastating disease that results in approximately 40,000 deaths each year in the USA. Current drug screening and chemopreventatitive methods are suboptimal, due in part to the poor specificity of compounds for cancer cells. Poly (ADP-ribose) polymerase 1 (PARP1) inhibitor (PARPi)-mediated therapy is a promising approach for familial breast cancers caused by mutations of breast cancer-associated gene-1 and -2 (BRCA1/2), yet drug resistance frequently occurs during the treatment. Moreover, PARPis exhibit very little effect on cancers that are proficient for DNA repair and clinical efficacy for PARPis as single-agent therapies has yet to be illustrated. METHODS: Using a quantitative high-throughput screening approach, we screened a library containing 2,816 drugs, most of which are approved for human or animal use by the Food and Drug Administration (FDA) or other countries, to identify compounds that sensitize breast cancer cells to PARPi. After initial screening, we performed further cellular and molecular analysis on lestaurtinib, which is an orally bioavailable multikinase inhibitor and has been used in clinical trials for myeloproliferative disorders and acute myelogenous leukemia. RESULTS: Our study indicated that lestaurtinib is highly potent against breast cancers as a mono-treatment agent. It also strongly enhanced the activity of the potent PARPi AG14361 on breast cancer cell growth both in vitro and in vivo conditions. The inhibition of cancer growth is measured by increased apoptosis and reduced cell proliferation. Consistent with this, the treatment results in activation of caspase 3/7, and accumulation of cells in the G2 phase of the cell cycle, irrespective of their BRCA1 status. Finally, we demonstrated that AG14361 inhibits NF-κB signaling, which is further enhanced by lestaurtinib treatment. CONCLUSIONS: Lestaurtinib amplifies the ability of the PARP1 inhibitor AG14361 to kill BRCA1 mutant and wild-type breast cancer cells, at least in part, by inhibiting NF-κB signaling. Each of these drugs has been approved for clinical trials for several different cancers, thus, their combination treatment should be applicable for a breast cancer trial in the future.


Assuntos
Proteína BRCA1/genética , Benzodiazepinas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Carbazóis/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Azulenos/farmacologia , Neoplasias da Mama/genética , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Reposicionamento de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Feminino , Furanos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Camundongos Nus , NF-kappa B/antagonistas & inibidores , Transplante de Neoplasias , Poli(ADP-Ribose) Polimerase-1 , Interferência de RNA , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA