Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37047759

RESUMO

Moolooite, Cu(C2O4)·nH2O, is a typical biomineral which forms due to Cu-bearing minerals coming into contact with oxalic acid sources such as bird guano deposits or lichens, and no single crystals of moolooite of either natural or synthetic origin have been found yet. This paper reports, for the first time, on the preparation of single crystals of a synthetic analog of the copper-oxalate biomineral moolooite, and on the refinement of its crystal structure from the single-crystal X-ray diffraction (SCXRD) data. Along with the structural model, the SCXRD experiment showed the significant contribution of diffuse scattering to the overall diffraction data, which comes from the nanostructural disorder caused by stacking faults of Cu oxalate chains as they lengthen. This type of disorder should result in the chains breaking, at which point the H2O molecules may be arranged. The amount of water in the studied samples did not exceed 0.15 H2O molecules per formula unit. Apparently, the mechanism of incorporation of H2O molecules governs the absence of good-quality single crystals in nature and a lack of them in synthetic experiments: the more H2O content in the structure, the stronger the disorder will be. A description of the crystal structure indicates that the ideal structure of the Cu oxalate biomineral moolooite should not contain H2O molecules and should be described by the Cu(C2O4) formula. However, it was shown that natural and synthetic moolooite crystals contain a significant portion of "structural" water, which cannot be ignored. Considering the substantially variable amount of water, which can be incorporated into the crystal structure, the formula Cu(C2O4)·nH2O for moolooite is justified.


Assuntos
Cobre , Ácido Oxálico , Cobre/química , Difração de Raios X , Cristalografia por Raios X , Água
2.
Inorg Chem ; 60(20): 15151-15158, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34565148

RESUMO

The breaking of inversion symmetry can enhance the multifunctional properties of layered hybrid organic-inorganic perovskites. However, the mechanisms by which inversion symmetry can be broken are not well-understood. Here, we study a series of MnCl4-based 2D perovskites with arylamine cations, namely, (C6H5CxH2xNH3)2MnCl4 (x = 0, 1, 2, 3), for which the x = 0, 1, and 3 members are reported for the first time. The compounds with x = 1, 2, and 3 adopt polar crystal structures to well above room temperature. We argue that the inversion symmetry breaking in these compounds is related to the rotational degree of freedom of the organic cations, which determine the hydrogen bonding pattern that links the organic and inorganic layers. We show that the tilting of MnCl6 octahedra is not the primary mechanism involved in inversion symmetry breaking in these materials. All four compounds show 2D Heisenberg antiferromagnetic behavior. A ferromagnetic component develops in each case below the long-range magnetic ordering temperature of ∼42-46 K due to spin canting.

3.
Molecules ; 25(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066351

RESUMO

Mesostructured pillared zeolite materials in the form of lamellar phases with a crystal structure of mordenite (MOR) and ZSM-5 (MFI) were grown using CTAB as an agent that creates mesopores, in a one-pot synthesis; then into the CTAB layers separating the 2D zeolite plates were introduced by diffusion the TEOS molecules which were further hydrolyzed, and finally the material was annealed to remove the organic phase, leaving the 2D zeolite plates separated by pillars of silicon dioxide. To monitor the successive structural changes and the state of the atoms of the zeolite framework and organic compounds at all the steps of the synthesis of pillared MOR and MFI zeolites, the nuclear magnetic resonance method (NMR) with magic angle spinning (MAS) was applied. The 27Al and 29Si MAS NMR spectra confirm the regularity of the zeolite frameworks of the as synthetized materials. Analysis of the 1H and 13C MAS NMR spectra and an experiment with variable contact time evidence a strong interaction between the charged "heads" -[N(CH3)3]+ of CTAB and the zeolite framework at the place of [AlO4]- location. According to 27Al and 29Si MAS NMR the evacuation of organic cations leads to a partial but not critical collapse of the local zeolite structure.


Assuntos
Silicatos de Alumínio/química , Ressonância Magnética Nuclear Biomolecular/métodos , Zeolitas/química , Alumínio , Varredura Diferencial de Calorimetria , Cetrimônio/química , Cristalização , Isótopos , Microscopia Eletrônica de Varredura , Silício , Espectrometria por Raios X , Termogravimetria , Difração de Raios X
4.
Chem Biodivers ; 15(2)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29427367

RESUMO

In this study, dissolution behaviour of 1,2,4-thiadiazole derivative (1-[5-(3-chloro-phenylamino)-1,2,4-thiadiazol-3-yl]-propan-2-ol) displaying an anti-Alzheimer activity was examined in biorelevant media such as Simulated Gastric Fluid (SGF, pH 1.2), Fasted State Simulated Gastric Fluid (FaSSGF, pH 1.6) and Fasted State Simulated Intestinal Fluid (FaSSIF, pH 6.5). It was found that solubility and dissolution rate of 1,2,4-thiadiazole derivative under consideration are not strongly dependent on pH, whereas these parameters are significantly affected by the buffer composition. Dissolution was found to be more effective in buffers composed of the surfactant micelles. It was demonstrated that considerable increase in solubility and dissolution rate in SGF is achieved through the interaction of 1,2,4-thiadiazole derivative with the micelles of sodium dodecyl sulfate. On the contrary, CMC of sodium taurochalate was shifted in the presence of 1,2,4-thiadiazole derivative, therefore, dissolution process is not so efficient in FaSSIF. Interactions occurring between 1,2,4-thiadiazole derivative and the components of biorelevant media were investigated in detail by means of UV/VIS spectroscopy, 1 H-NMR and phase solubility methods.


Assuntos
Doença de Alzheimer/prevenção & controle , Desenho de Fármacos , Tiadiazóis/farmacologia , Micelas , Estrutura Molecular , Dodecilsulfato de Sódio/química , Solubilidade , Ácido Taurocólico/química , Tiadiazóis/síntese química , Tiadiazóis/química
5.
J Org Chem ; 83(5): 2788-2801, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29402088

RESUMO

To find promising analogues of naturally occurring enediyne antibiotics with a sufficient reactivity in the Bergman cyclization and moderately stable under isolation and storage, a scale of relative enediynes reactivity was created on the basis of calculated free activation energies for the Bergman cyclization within 12 known and new benozothiophene, benzene, and cinnoline annulated 9- and 10-membered enediynes. To verify the predicted reactivity/stability balance, three new carbocyclic enediynes fused to a benzothiophene core bearing 3,4,5-trimethoxybenzene, fluoroisopropyl, and isopropenyl substituents were synthesized using the Nicholas-type macrocyclization. It was confirmed that annulation of a 3,4,5-trimethoxybenzene moiety to a 10-membered enediyne macrocycle imparts high reactivity to an enediyne while also conferring instability under ambient temperature. Fluoroisopropyl-substituted 10-membered enediyne from the opposite end of the scale was found to be stable while moderately reactive in the Bergman cyclization. Along with the experimentally confirmed moderate reactivity (DSC kinetic studies), (fluoroisopropyl)enediyne showed a significant DNA damaging activity in plasmid cleavage assays comparable with the known anticancer drug Zeocin.


Assuntos
Enedi-Inos/química , Tiofenos/química , Ciclização , Dano ao DNA , Estabilidade de Medicamentos , Enedi-Inos/farmacologia , Modelos Moleculares , Conformação Molecular , Teoria Quântica
6.
Inorg Chem ; 56(1): 33-41, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27626290

RESUMO

High-quality single crystals of perovskite-like (CH3NH3)3Bi2I9 hybrids have been synthesized, using a layered-solution crystal-growth technique. The large dielectric constant is strongly affected by the polar ordering of its constituents. Progressive dipolar ordering of the methylammonium cation upon cooling below 300 K gradually converts the hexagonal structure (space group P63/mmc) into a monoclinic phase (C2/c) at 160 K. A well-pronounced, ferrielectric phase transition at 143 K is governed by in-plane ordering of the bismuth lone pair that breaks inversion symmetry and results in a polar phase (space group P21). The dielectric constant is markedly higher in the C2/c phase above this transition. Here, the bismuth lone pair is disordered in-plane, allowing the polarizability to be substantially enhanced. Density functional theory calculations estimate a large ferroelectric polarization of 7.94 µC/cm2 along the polar axis in the P21 phase. The calculated polarization has almost equal contributions of the methylammonium and Bi3+ lone pair, which are fairly decoupled.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...