Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 119(1): 404-412, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38646817

RESUMO

The main bottleneck in the application of biotechnological breeding methods to woody species is due to the in vitro regeneration recalcitrance shown by several genotypes. On the other side, woody species, especially grapevine (Vitis vinifera L.), use most of the pesticides and other expensive inputs in agriculture, making the development of efficient approaches of genetic improvement absolutely urgent. Genome editing is an extremely promising technique particularly for wine grape genotypes, as it allows to modify the desired gene in a single step, preserving all the quality traits selected and appreciated in elite varieties. A genome editing and regeneration protocol for the production of transgene-free grapevine plants, exploiting the lipofectamine-mediated direct delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) to target the phytoene desaturase gene, is reported. We focused on Nebbiolo (V. vinifera), an extremely in vitro recalcitrant wine genotype used to produce outstanding wines, such as Barolo and Barbaresco. The use of the PEG-mediated editing method available in literature and employed for highly embryogenic grapevine genotypes did not allow the proper embryo development in the recalcitrant Nebbiolo. Lipofectamines, on the contrary, did not have a negative impact on protoplast viability and plant regeneration, leading to the obtainment of fully developed edited plants after about 5 months from the transfection. Our work represents one of the first examples of lipofectamine use for delivering editing reagents in plant protoplasts. The important result achieved for the wine grape genotype breeding could be extended to other important wine grape varieties and recalcitrant woody species.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Genótipo , Lipídeos , Protoplastos , Vitis , Vitis/genética , Edição de Genes/métodos , Protoplastos/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Vinho , Genoma de Planta/genética , Oxirredutases/genética , Oxirredutases/metabolismo
2.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38419289

RESUMO

AIMS: The work presented here was conducted to characterize the biodiversity of a collection of bacterial isolates, mainly wood endophytes, as part of a research project focused on exploring their bioprotective potential for postharvest biological control of fruits. METHODS AND RESULTS: This work was the basis for the development of a tailored method combining 16S rDNA sequencing and Rep-PCR to differentiate the isolates and identify them to genus level or below. More than one hundred isolates obtained from wood and roots of different grapevine genotypes were cultured on appropriate growth media and then subjected to the specified multistep molecular identification. CONCLUSIONS: We have obtained good dereplication for grapevine-endophytic bacteria, together with reliable genetic identification. Both are essential prerequisites to properly characterize a biome bank and, at the same time, beneficial prerequisites to subsequently perform a correct bioprotection assessment.


Assuntos
Bactérias , Endófitos , RNA Ribossômico 16S/genética , Biodiversidade , Análise de Sequência de DNA , Raízes de Plantas/microbiologia , Filogenia
3.
Physiol Plant ; 175(6): e14063, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148244

RESUMO

Drought tolerance varies greatly across Vitis vinifera cultivars, depending on physiological responses and structural and morphological adaptations. In this study, responses to water stress were examined in three extensively cultivated varieties from Northern Italy. Over the course of two seasons, mature potted vines were subjected to a 12 or 13-day period of water restriction. Vine water relations were investigated using measures of water potential, gas exchanges, and leaf ABA content. Leaf angle response to increasing water stress was analysed in the four cultivars as a mechanism that improves stress tolerance. Different physiological responses were observed among cultivars, suggesting a near-isohydric water-use strategy for Moscato and a near-anisohydric one for Garganega, Glera and Merlot. Results of leaf ABA analysis highlighted a variability among the studied varieties, indicating higher contents and lower sensitivity to ABA for the anisohydric ones. In all varieties, a similar increase in midday leaf inclination was observed in response to decreasing stem water potentials, indicating that leaf angle adjustments may represent a common adaptive response to drought. These findings increase the understanding of the leaf physiological and structural mechanisms that contribute to water stress tolerance in grapevine, supporting a more efficient cultivar selection to cope with the expected changes in Mediterranean climate.


Assuntos
Secas , Vitis , Desidratação , Folhas de Planta/fisiologia , Vitis/fisiologia , Estações do Ano
4.
Biosci Rep ; 43(11)2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-37881894

RESUMO

The need to minimise the impact of phytosanitary treatments for disease control boosted researchers to implement techniques with less environmental impact. The development of technologies using molecular mechanisms based on the modulation of metabolism by short dsRNA sequences appears promising. The intrinsic fragility of polynucleotides and the high cost of these techniques can be circumvented by nanocarriers that protect the bioactive molecule enabling high efficiency delivery to the leaf surface and extending its half-life. In this work, a specific protocol was developed aiming to assess the best methodological conditions for the synthesis of low-size chitosan nanoparticles (NPs) to be loaded with nucleotides. In particular, NPs have been functionalised with partially purified Green Fluorescent Protein dsRNAs (GFP dsRNA) and their size, surface charge and nucleotide retention capacity were analysed. Final NPs were also stained with FITC and sprayed on Nicotiana benthamiana leaves to assess, by confocal microscopy, both a distribution protocol and the fate of NPs up to 6 days after application. Finally, to confirm the ability of NPs to increase the efficacy of dsRNA interference, specific tests were performed: by means of GFP dsRNA-functionalised NPs, the nucleotide permanence during time was assessed both in vitro on detached wild-type N. benthamiana leaves and in planta; lastly, the inhibition of Botrytis cinerea on single leaves was also evaluated, using a specific fungal sequence (Bc dsRNA) as the NPs' functionalising agent. The encouraging results obtained are promising in the perspective of long-lasting application of innovative treatments based on gene silencing.


Assuntos
Quitosana , Nanopartículas , RNA de Cadeia Dupla/genética , Interferência de RNA , Proteção de Cultivos , Nucleotídeos
5.
Environ Microbiol Rep ; 15(6): 459-483, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37226644

RESUMO

Legumes maintain soil fertility thanks to their associated microbiota but are threatened by climate change that causes soil microbial community structural and functional modifications. The core microbiome associated with different chickpea and lentil genotypes was described after an unexpected climatic event. Results showed that chickpea and lentil bulk soil microbiomes varied significantly between two sampling time points, the first immediately after the rainfall and the second 2 weeks later. Rhizobia were associated with the soil of the more productive chickpea genotypes in terms of flower and fruit number. The root-associated bacteria and fungi were surveyed in lentil genotypes, considering that several parcels showed disease symptoms. The metabarcoding analysis revealed that reads related to fungal pathogens were significantly associated with one lentil genotype. A lentil core prokaryotic community common to all genotypes was identified as well as a genotype-specific one. A higher number of specific bacterial taxa and an enhanced tolerance to fungal diseases characterized a lentil landrace compared to the commercial varieties. This outcome supported the hypothesis that locally adapted landraces might have a high recruiting efficiency of beneficial soil microbes.


Assuntos
Cicer , Lens (Planta) , Microbiota , Solo , Microbiota/genética , Bactérias/genética , Genótipo , Microbiologia do Solo , Raízes de Plantas/microbiologia
6.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769211

RESUMO

Drought stress is one of the major physiological stress factors that adversely affect agricultural production, altering critical features of plant growth and metabolism. Plants can be subjected simultaneously to abiotic and biotic stresses, such as drought and viral infections. Rewarding effects provided by viruses on the ability of host plants to endure abiotic stresses have been reported. Recently, begomoviruses causing the tomato yellow leaf curl disease in tomatoes were shown to increase heat and drought tolerance. However, biological bases underlying the induced drought tolerance need further elucidation, particularly in the case of tomato plants. In this work, tomato plants infected by the tomato yellow leaf curl Sardinia virus (TYLCSV) were subjected to severe drought stress, followed by recovery. Morphological traits, water potential, and hormone contents were measured in leaves together with molecular analysis of stress-responsive and hormone metabolism-related genes. Wilting symptoms appeared three days later in TYLCSV-infected plants compared to healthy controls and post-rehydration recovery was faster (2 vs. 4 days, respectively). Our study contributes new insights into the impact of viruses on the plant's adaptability to environmental stresses. On a broader perspective, such information could have important practical implications for managing the effects of climate change on agroecosystems.


Assuntos
Begomovirus , Solanum lycopersicum , Begomovirus/genética , Resistência à Seca , Doenças das Plantas
7.
Hortic Res ; 9: uhac164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324645

RESUMO

Viruses can interfere with the ability of plants to overcome abiotic stresses, indicating the existence of common molecular networks that regulate stress responses. A begomovirus causing the tomato yellow leaf curl disease was recently shown to enhance heat tolerance in tomato and drought tolerance in tomato and Nicotiana benthamiana and experimental evidence suggested that the virus-encoded protein C4 is the main trigger of drought responses. However, the physiological and molecular events underlying C4-induced drought tolerance need further elucidation. In this study, transgenic tomato plants expressing the tomato yellow leaf curl Sardinia virus (TYLCSV) C4 protein were subjected to severe drought stress, followed by recovery. Morphometric parameters, water potential, gas exchanges, and hormone contents in leaves were measured, in combination with molecular analysis of candidate genes involved in stress response and hormone metabolism. Collected data proved that the expression of TYLCSV C4 positively affected the ability of transgenic plants to tolerate water stress, by delaying the onset of stress-related features, improving the plant water use efficiency and facilitating a rapid post-rehydration recovery. In addition, we demonstrated that specific anatomical and hydraulic traits, rather than biochemical signals, are the keynote of the C4-associated stress resilience. Our results provide novel insights into the biology underpinning drought tolerance in TYLCSV C4-expressing tomato plants, paving the way for further deepening the mechanism through which such proteins tune the plant-virus interaction.

8.
Plant J ; 112(4): 1098-1111, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209488

RESUMO

To understand how grapevine sinks compete with each other during water stress and subsequent rehydration, carbon (C) allocation patterns in drought-rehydrated vines (REC) at the beginning of fruit ripening were compared with control vines maintained under drought (WS) or fully irrigated (WW). In the 30 days following rehydration, the quantity and distribution of newly fixed C between leaves, roots and fruits was evaluated through 13 CO2 pulse-labeling and stable isotope ratio mass spectrometry. REC plants diverted the same percentage of fixed C towards the berries as the WS plants, although the percentage was higher than that of WW plants. Net photosynthesis (measured simultaneously with root respiration in a multichamber system for analysis of gas exchange above- and below-ground) was approximately two-fold greater in REC compared to WS treatment, and comparable or even higher than in WW plants. Maximizing C assimilation and delivery in REC plants led to a significantly higher amount of newly fixed C compared to both control treatments, already 2 days after rehydration in root, and 2 days later in the berries, in line with the expression of genes responsible for sugar metabolism. In REC plants, the increase in C assimilation was able to support the requests of the sinks during fruit ripening, without affecting the reserves, as was the case in WS. These mechanisms clarify what is experienced in fruit crops, when occasional rain or irrigation events are more effective in determining sugar delivery towards fruits, rather than constant and satisfactory water availabilities.


Assuntos
Secas , Vitis , Frutas/metabolismo , Vitis/genética , Vitis/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Açúcares/metabolismo
9.
Trends Plant Sci ; 27(11): 1134-1143, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35803843

RESUMO

Domestication processes, amplified by breeding programs, have allowed the selection of more productive genotypes and more suitable crop lines capable of coping with the changing climate. Notwithstanding these advancements, the impact of plant breeding on the ecology of plant-microbiome interactions has not been adequately considered yet. This includes the possible exploitation of beneficial plant-microbe interactions to develop crops with improved performance and better adaptability to any environmental scenario. Here we discuss the exploitation of customized synthetic microbial communities in agricultural systems to develop more sustainable breeding strategies based on the implementation of multiple interactions between plants and their beneficial associated microorganisms.


Assuntos
Microbiota , Melhoramento Vegetal , Agricultura , Produtos Agrícolas/genética , Domesticação , Microbiota/genética
10.
Virus Res ; 316: 198802, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35580787

RESUMO

Halyomorpha halys (Stål, 1855) (Hemiptera: Pentatomidae), the brown marmorated stink bug, is an invasive pentatomid native to East-Asia, and introduced worldwide in recent times. It is a polyphagous pest with approximately 300 host plants, which, due to its plasticity, reproductive and feeding behavior, long-distance flight, and walking as well as human-mediated dispersal ability, is able to cause significant economic and ecological damage. In several cases pest control mediated by insecticide treatments leads to unsatisfactory efficacy, mostly due to insect recovery ability. Thus, the most promising method for the long-term management of this pest has been focused with growing emphasis on classical biological control strategies. In this framework, viruses have untill now been poorly investigated in H. halys with only a single virus described from the US territory. For this reason we investigated the virome associated with a small and well described population of H. halys from Piedmont (Italy) describing for the first time 7 new viral sequences belonging to different taxonomical groups. Further studies will be necessary to assess the biological and ecological effects the viruses have on their host. Due to the agricultural importance of this insect, the biological characterization of these viruses would give important information on the possibility to exploit viral entities as biological control agents. Finally, the presence of a such relevant number of viruses from a small population suggests a wide association between the brown marmorated stink bug and viral entities. Further studies to determine the possible exploitation of viral sequences to trace different populations are ongoing.


Assuntos
Heterópteros , Viroma , Agricultura , Animais , Comportamento Alimentar , Heterópteros/virologia
11.
Pest Manag Sci ; 78(6): 2342-2356, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35246907

RESUMO

BACKGROUND: Reduction of fungicide consumption in agriculture is globally recognized as a priority. Government authorities are fostering research to achieve a reduction of risks associated with conventional pesticides and promoting the development of sustainable alternatives. To address these issues, in the present study, alternative protocols for the control of downy mildew infection in grapevine were compared to the standard protocol. In the first protocol, only resistance inducers were used, comprising a single formulation with Acibenzolar S-methyl, laminarin and disodium-phosphonate. The second and third protocols followed the standard protocol but substituted phosphonates with phosphorus pentoxide and Ecklonia maxima extract. RESULTS: The results showed that at veraison downy mildew incidence and severity in all tested protocols were significantly reduced compared to nontreated controls on both canopy and bunches. Expression analysis of key genes involved in plant stress response, indicated that the two protocols for phosphites substitution induced a remodulation of salicylic acid (SA) and jasmonic acid (JA), with positive impact on yields. Analysis of the first protocol revealed that the primed state induced a short delay in bunch ripening, with a shift of carbohydrate metabolism to boost the plant defences, involving an upregulation of defence related-gene, SAR response and a decreased ROS detoxification. Additionally, analysis on the arthropods populations, in parallel with the positive results achieved using alternatives to conventional fungicides, were enriched by those showing the potential of naturally occurring predators of spider mites. CONCLUSION: This study provides practical solutions to reduce the environmental impact of treatments for the control downy mildew in viticulture. © 2022 Society of Chemical Industry.


Assuntos
Artrópodes , Fungicidas Industriais , Oomicetos , Peronospora , Vitis , Animais , Resistência à Doença/genética , Fungicidas Industriais/metabolismo , Fungicidas Industriais/farmacologia , Regulação da Expressão Gênica de Plantas , Oomicetos/fisiologia , Doenças das Plantas/prevenção & controle , Vitis/genética
12.
J Exp Bot ; 73(12): 4046-4064, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35325111

RESUMO

Recalcitrant adventitious root (AR) development is a major hurdle in propagating commercially important woody plants. Although significant progress has been made to identify genes involved in subsequent steps of AR development, the molecular basis of differences in apparent recalcitrance to form AR between easy-to-root and difficult-to-root genotypes remains unknown. To address this, we generated cambium tissue-specific transcriptomic data from stem cuttings of hybrid aspen, T89 (difficult-to-root) and hybrid poplar OP42 (easy-to-root), and used transgenic approaches to verify the role of several transcription factors in the control of adventitious rooting. Increased peroxidase activity was positively correlated with better rooting. We found differentially expressed genes encoding reactive oxygen species scavenging proteins to be enriched in OP42 compared with T89. A greater number of differentially expressed transcription factors in cambium cells of OP42 compared with T89 was revealed by a more intense transcriptional reprograming in the former. PtMYC2, a potential negative regulator, was less expressed in OP42 compared with T89. Using transgenic approaches, we demonstrated that PttARF17.1 and PttMYC2.1 negatively regulate adventitious rooting. Our results provide insights into the molecular basis of genotypic differences in AR and implicate differential expression of the master regulator MYC2 as a critical player in this process.


Assuntos
Regulação da Expressão Gênica de Plantas , Populus , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo
13.
J Exp Bot ; 73(8): 2682-2697, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35106548

RESUMO

The importance of plants as complex entities influenced by genomes of the associated microorganisms is now seen as a new source of variability for a more sustainable agriculture, also in the light of ongoing climate change. For this reason, we investigated through metatranscriptomics whether the taxa profile and behaviour of microbial communities associated with the wood of 20-year-old grapevine plants are influenced by the health status of the host. We report for the first time a metatranscriptome from a complex tissue in a real environment, highlighting that this approach is able to define the microbial community better than referenced transcriptomic approaches. In parallel, the use of total RNA enabled the identification of bacterial taxa in healthy samples that, once isolated from the original wood tissue, displayed potential biocontrol activities against a wood-degrading fungal taxon. Furthermore, we revealed an unprecedented high number of new viral entities (~120 new viral species among 180 identified) associated with a single and limited environment and with potential impact on the whole holobiont. Taken together, our results suggest a complex multitrophic interaction in which the viral community also plays a crucial role in raising new ecological questions for the exploitation of microbial-assisted sustainable agriculture.


Assuntos
Endófitos , Microbiota , Bactérias/genética , Plantas , Madeira
14.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35163015

RESUMO

Nowadays, the worldwide agriculture is experiencing a transition process toward more sustainable production, which requires the reduction of chemical inputs and the preservation of microbiomes' richness and biodiversity. Plants are no longer considered as standalone entities, and the future of agriculture should be grounded on the study of plant-associated microorganisms and all their potentiality. Moreover, due to the climate change scenario and the resulting rising incidence of abiotic stresses, an innovative and environmentally friendly technique in agroecosystem management is required to support plants in facing hostile environments. Plant-associated microorganisms have shown a great attitude as a promising tool to improve agriculture sustainability and to deal with harsh environments. Several studies were carried out in recent years looking for some beneficial plant-associated microbes and, on the basis of them, it is evident that Actinomycetes and arbuscular mycorrhizal fungi (AMF) have shown a considerable number of positive effects on plants' fitness and health. Given the potential of these microorganisms and the effects of climate change, this review will be focused on their ability to support the plant during the interaction with abiotic stresses and on multi-omics techniques which can support researchers in unearthing the hidden world of plant-microbiome interactions. These associated microorganisms can increase plants' endurance of abiotic stresses through several mechanisms, such as growth-promoting traits or priming-mediated stress tolerance. Using a multi-omics approach, it will be possible to deepen these mechanisms and the dynamic of belowground microbiomes, gaining fundamental information to exploit them as staunch allies and innovative weapons against crop abiotic enemies threatening crops in the ongoing global climate change context.


Assuntos
Actinobacteria/fisiologia , Biologia Computacional/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Micorrizas/fisiologia , Mudança Climática , Produtos Agrícolas/microbiologia , Genômica , Metabolômica , Desenvolvimento Vegetal , Microbiologia do Solo , Estresse Fisiológico , Biologia de Sistemas
15.
Microb Biotechnol ; 15(5): 1357-1373, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35182024

RESUMO

Grapevine (Vitis spp.) is a widespread fruit tree hosting many viral entities that interact with the plant modifying its responses to the environment. The production of virus-free plants is becoming increasingly crucial for the use of grapevine as a model species in different studies. Using high-throughput RNA sequencing, the viromes of seven mother plants grown in a germplasm collection vineyard were sequenced. In addition to the viruses and viroids already detected in grapevine, we identified 13 putative new mycoviruses. The different spread among grapevine tissues collected in vineyard, greenhouse and in vitro conditions suggested a clear distinction between viruses/viroids and mycoviruses that can successfully be exploited for their identification. Mycoviruses were absent in in vitro cultures, while plant viruses and viroids were particularly accumulated in these plantlets. Somatic embryogenesis applied to the seven mother plants was effective in the elimination of the complete virome, including mycoviruses. However, different sanitization efficiencies for viroids and grapevine pinot gris virus were observed among genotypes. The absence of mycoviruses in in vitro plantlets, associated with the absence of all viral entities in somaclones, suggested that this regeneration technique is also effective to eradicate endophytic/epiphytic fungi, resulting in gnotobiotic or pseudo-gnotobiotic plants.


Assuntos
Vírus de Plantas , Vitis , Desenvolvimento Embrionário , Doenças das Plantas , Vírus de Plantas/genética , RNA Viral , Regeneração , Viroma
16.
Plant Cell Environ ; 45(2): 347-361, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34799858

RESUMO

Along with the ongoing climate change, drought events are predicted to become more severe. In this context, the spray-induced gene silencing (SIGS) technique could represent a useful strategy to improve crop stress resilience. A previous study demonstrated that the Arabidopsis mutants for a glutathione S-transferase (GST) gene had increased abscisic acid (ABA) levels and a more activated antioxidant system, both features that improved drought resilience. Here, we used SIGS to target a putative grape GST gene (VvGST40). Then, ecophysiological, biochemical and molecular responses of 'Chardonnay' cuttings were analysed during a drought and recovery time-course. Gas exchange, ABA and t-resveratrol concentration as well as expression of stress-related genes were monitored in not treated controls, dsRNA-VvGST40- and dsRNA-GFP- (negative control of the technique) treated plants, either submitted or not to drought. VvGST40-treated plants revealed increased resilience to severe drought as attested by the ecophysiological data. Analysis of target metabolites and antioxidant- and ABA-related transcripts confirmed that VvGST40-treated plants were in a priming status compared with controls. SIGS targeting an endogenous gene was successfully applied in grapevine, confirming the ability of this technique to be exploited not only for plant protection issues but also for functional genomic studies.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Glutationa Transferase/genética , Proteínas de Plantas/genética , Vitis/fisiologia , Glutationa Transferase/metabolismo , Proteínas de Plantas/metabolismo , Vitis/genética
17.
J Fungi (Basel) ; 7(10)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34682254

RESUMO

Microbial multi-level interactions are essential to control the success of spreading and survival of most microbes in natural environments. Phytopathogenic mycotoxigenic fungal species, such as Aspergillus flavus, represent an important issue in food safety. Usually, non-toxigenic strains are exploited for biocontrol strategies to mitigate infections by toxigenic strains. To comprehend all the biological variables involved in the aflatoxin biosynthesis, and to possibly evaluate the interplay between A. flavus toxigenic and non-toxigenic strains during intraspecific biocompetition, the "virological" perspective should be considered. For these reasons, investigations on mycoviruses associated to A. flavus populations inhabiting specific agroecosystems are highly desirable. Here, we provide the first accurate characterization of the novel mycovirome identified within an A. flavus wild population colonizing the maize fields of northern Italy: a selection of A. flavus strains was biologically characterized and subjected to RNAseq analysis, revealing new mycoviruses and a peculiar geographic pattern distribution in addition to a 20% rate of infection. More interestingly, a negative correlation between viral infection and aflatoxin production was found. Results significantly expanded the limited existent data about mycoviruses in wild A. flavus, opening new and intriguing hypotheses about the ecological significance of mycoviruses.

18.
Plant Biotechnol J ; 19(8): 1495-1510, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33945200

RESUMO

Traditional breeding or genetically modified organisms (GMOs) have for a long time been the sole approaches to effectively cope with biotic and abiotic stresses and implement the quality traits of crops. However, emerging diseases as well as unpredictable climate changes affecting agriculture over the entire globe force scientists to find alternative solutions required to quickly overcome seasonal crises. In this review, we first focus on cisgenesis and genome editing as challenging biotechnological approaches for breeding crops more tolerant to biotic and abiotic stresses. In addition, we take into consideration a toolbox of new techniques based on applications of RNA interference and epigenome modifications, which can be adopted for improving plant resilience. Recent advances in these biotechnological applications are mainly reported for non-model plants and woody crops in particular. Indeed, the characterization of RNAi machinery in plants is fundamental to transform available information into biologically or biotechnologically applicable knowledge. Finally, here we discuss how these innovative and environmentally friendly techniques combined with traditional breeding can sustain a modern agriculture and be of potential contribution to climate change mitigation.


Assuntos
Proteção de Cultivos , Melhoramento Vegetal , Produtos Agrícolas/genética , Edição de Genes , Plantas Geneticamente Modificadas/genética
19.
Hortic Res ; 7(1): 188, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328482

RESUMO

Grapevine may be affected simultaneously by several pathogens whose complex interplay is largely unknown. We studied the effects of infection by two grapevine viruses on powdery mildew and downy mildew development and the molecular modifications induced in grapevines by their multiple interactions. Grapevine fanleaf virus (GFLV) and grapevine rupestris stem pitting-associated virus (GRSPaV) were transmitted by in vitro-grafting to Vitis vinifera cv Nebbiolo and Chardonnay virus-free plantlets regenerated by somatic embryogenesis. Grapevines were then artificially inoculated in the greenhouse with either Plasmopara viticola or Erysiphe necator spores. GFLV-infected plants showed a reduction in severity of the diseases caused by powdery and downy mildews in comparison to virus-free plants. GFLV induced the overexpression of stilbene synthase genes, pathogenesis-related proteins, and influenced the genes involved in carbohydrate metabolism in grapevine. These transcriptional changes suggest improved innate plant immunity, which makes the GFLV-infected grapevines less susceptible to other biotic attacks. This, however, cannot be extrapolated to GRSPaV as it was unable to promote protection against the fungal/oomycete pathogens. In these multiple interactions, the grapevine genotype seemed to have a crucial role: in 'Nebbiolo', the virus-induced molecular changes were different from those observed in 'Chardonnay', suggesting that different metabolic pathways may be involved in protection against fungal/oomycete pathogens. These results indicate that complex interactions do exist between grapevine and its different pathogens and represent the first study on a topic that still is largely unexplored.

20.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33213072

RESUMO

As key players in biotic stress response of plants, jasmonic acid (JA) and its derivatives cover a specific and prominent role in pathogens-mediated signaling and hence are promising candidates for a sustainable management of phytopathogenic fungi. Recently, JA directed antimicrobial effects on plant pathogens has been suggested, supporting the theory of oxylipins as double gamers in plant-pathogen interaction. Based on these premises, six derivatives (dihydrojasmone and cis-jasmone, two thiosemicarbazonic derivatives and their corresponding complexes with copper) have been evaluated against 13 fungal species affecting various economically important herbaceous and woody crops, such as cereals, grapes and horticultural crops: Phaeoacremonium minimum, Neofusicoccum parvum, Phaeomoniella chlamydospora, Fomitiporia mediterranea, Fusarium poae, F. culmorum, F. graminearum, F. oxysporum f. sp. lactucae,F. sporotrichioides, Aspergillus flavus, Rhizoctonia solani,Sclerotinia spp. and Verticillium dahliae. The biological activity of these compounds was assessed in terms of growth inhibition and, for the two mycotoxigenic species A. flavus and F. sporotrichioides, also in terms of toxin containment. As expected, the inhibitory effect of molecules greatly varied amongst both genera and species; cis-jasmone thiosemicarbazone in particular has shown the wider range of effectiveness. However, our results show that thiosemicarbazones derivatives are more effective than the parent ketones in limiting fungal growth and mycotoxins production, supporting possible applications for the control of pathogenic fungi.


Assuntos
Produtos Agrícolas , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Doenças das Plantas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...