Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36015424

RESUMO

Areas covered by seminatural grasslands have been in constant decline for decades in Europe. This trend is particularly strong for mountain territories, where such traditional agricultural practices as cattle grazing are no longer economically feasible. This study was conducted in the subalpine pasture of Cinte Tesino (TN, Italy), where local farmers have applied the following different management strategies: shorter and longer grazing durations during the season and a complete abandonment for the last 15 years. We aimed to study how these different management strategies impact the functioning and diversity of vegetation and the chemical and biological characteristics of the soil. Species richness was higher in plots subjected to longer grazing with a prevalence of D. caespitosa in terms of biomass share. A decline in species richness in abandoned plots was accompanied by an increase in the share of other graminoids in collected biomass. A concomitant increase in leaf N concentration and light availability in grazed plots resulted in higher photosynthetic efficiency in some species, as revealed by the δ13C of plant tissues. Soils under grazing were characterised by a higher concentration of total and extractable N, almost doubled microbial biomass C and increased extracellular enzymes activity, evidencing nutrient cycling mobilization. While the microbial pool was characterised by lower mineralization rates, C was lost from the soil with 15 years of abandonment. The longer grazing season demonstrated to be the most beneficial, promoting species richness, C accumulation and better soil microbial functioning. A change in soil pH from strongly acidic to moderately acidic with longer grazing is likely one of the important factors adding to the success in the functioning of primary producers and decomposers in this site.

2.
J Environ Manage ; 306: 114452, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032939

RESUMO

In terrestrial biosphere, soil represents the largest organic carbon pool, and a small change of soil organic carbon (SOC) can significantly affect the global carbon cycle and climate. Land use change (LUC) and soil management practices coupled with climate variables can significantly influence the soil organic carbon stocks (SOC-S) and its dynamics; however, our understanding about the responses of SOC in different LUC's (e.g., cropland, grassland and forest land) to mitigate climate change is quite limited at country level like Italy. Thus, the aims of this study were which factors are affecting SOC dynamics in three LUC's over time across Italy; and their relevance in terms of SOC-S in the superficial layer of soil that significantly contributes to the climate change mitigation, using LUCAS soil database. To calculate the SOC-S, it is necessary to have soil bulk density (BD) which is not present in the LUCAS database. Thus, we estimate the soil BD using the pedotransfer function (PTFs); and results shows that the soil BD obtained from fitting of the PTFs were reasonable to estimate the SOC-S for different land use types (R2 ≥ 0.75). Overall, results showed that LUC's and soil management practices can significantly (p < 0.001) influences SOC dynamics and SOC storage from the soil and varied among LUC's but not for over time except grassland. Spatially, the mean SOC-S storage of the different LUC's was in the following order: forest land > grassland > cropland for both years 2009 and 2015. On the other hand, the SOC-S storage increased by 8.33% for cropland, 13.56% for forest land, and 29.79% for grassland during the year of 2009-2015, while SOC-S storage increased significantly (p < 0.001) in grassland over time but not for cropland and forest land which also follow the increasing trend but insignificantly. Our results also reveal that the SOC dynamics negatively correlated with MAT, and positively correlated with MAP for all land uses except forest land. Thus, this research indicates that LUC's and soil management practices coupled with climate variables can significantly influence SOC storage and its dynamics in the superficial layer of soil which have the potential capacity to mitigate climate change.


Assuntos
Carbono , Solo , Carbono/análise , Ciclo do Carbono , Sequestro de Carbono , China , Florestas , Itália
3.
J Environ Manage ; 287: 112285, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33725659

RESUMO

Soil quality is fundamental for ecosystem long term functionality, productivity and resilience to current climatic changes. Despite its importance, soil is lost and degraded at dramatic rates worldwide. In Europe, the Mediterranean areas are a hotspot for soil erosion and land degradation due to a combination of climatic conditions, soils, geomorphology and anthropic pressure. Soil organic carbon (SOC) is considered a key indicator of soil quality as it relates to other fundamental soil functions supporting crucial ecosystem services. In the present study, the functional relationships among SOC and other important soil properties were investigated in the topsoil of 38 sites under different land cover and management, distributed over three Mediterranean regions under strong desertification risk, with the final aim to define critical SOC ranges for fast loss of important soil functionalities. The study sites belonged to private and public landowners seeking to adopt sustainable land management practices to support ecosystem sustainability and productivity of their land. Data showed a very clear relationship between SOC concentrations and the other analyzed soil properties: total nitrogen, bulk density, cation exchange capacity, available water capacity, microbial biomass, C fractions associated to particulate organic matter and to the mineral soil component and indirectly with net N mineralization. Below 20 g SOC kg-1, additional changes of SOC concentrations resulted in a steep variation of all the analyzed soil indicators, an order of magnitude higher than the changes occurring between 50 and 100 g SOC kg-1 and 3-4 times the changes observed at 20-50 g SOC kg-1. About half of the study sites showed average SOC concentration of the topsoil centimetres <20 g SOC kg-1. For these areas the level of SOC might hence be considered critical and immediate and effective recovery management plans are needed to avoid complete land degradation in the next future.


Assuntos
Carbono , Solo , Carbono/análise , Conservação dos Recursos Naturais , Ecossistema , Europa (Continente) , Região do Mediterrâneo
4.
Sci Total Environ ; 672: 106-120, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30954809

RESUMO

Woody encroachment is a widespread phenomenon resulting from the abandonment of mountain agricultural and pastoral practices during the last century. As a result, forests have expanded, increasing biomass and necromass carbon (C) pools. However, the impact on soil organic carbon (SOC) is less clear. The main aim of this study was to investigate the effect of woody encroachment on SOC stocks and ecosystem C pools in six chronosequences located along the Italian peninsula, three in the Alps and three in the Apennines. Five stages along the chronosequences were identified in each site. Considering the topsoil (0-30 cm), subsoil (30 cm-bedrock) and whole soil profile, the temporal trend in SOC stocks was similar in all sites, with an initial increment and subsequent decrement in the intermediate phase. However, the final phase of the woody encroachment differed significantly between the Alps (mainly conifers) and the Apennines (broadleaf forests) sites, with a much more pronounced increment in the latter case. Compared to the previous pastures, after mature forest (>62 years old) establishment, SOC stocks increased by: 2.1(mean) ±â€¯18.1(sd) and 50.1 ±â€¯25.2 Mg C·ha-1 in the topsoil, 7.3 ±â€¯17.4 and 93.2 ±â€¯29.7 Mg C·ha-1 in the subsoil, and 9.4 ±â€¯24.4 and 143.3 ±â€¯51.0 Mg C·ha-1 in the whole soil profile in Alps and Apennines, respectively. Changes in SOC stocks increased with mean annual air temperature and average minimum winter temperature, and were negatively correlated with the sum of summer precipitation. At the same time, all other C pools (biomass and necromass) increased by 179.1 ±â€¯51.3 and 304.2 ±â€¯67.6 Mg C·ha-1 in the Alps and the Apennines sites, respectively. This study highlights the importance of considering both the subsoil, since deep soil layers contributed 38% to the observed variations in carbon stocks after land use change, and the possible repercussions for the carbon balance of large areas where forests are expanding, especially under pressing global warming scenarios.

5.
Rapid Commun Mass Spectrom ; 25(5): 624-8, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21290449

RESUMO

Improved tools for tracing phosphate transformations in soils are much needed, and can lead to a better understanding of the terrestrial phosphorus cycle. The oxygen stable isotopes in soil phosphate are still not exploited in this regard. Here we present a method for measuring the oxygen stable isotopes in a fraction of the soil phosphate which is rapidly available to plants, the resin-extractable P. This method is based on extracting available phosphate from the soil with anion-exchange membranes, soil organic matter removal by a resin, purification by precipitation as cerium phosphate, and finally precipitation as silver phosphate. The purified silver phosphate samples are then measured by a high-temperature elemental analyzer (HT-EA) coupled in continuous flow mode to an isotope ratio mass spectrometer. Testing the method with Mediterranean and semi-arid soils showed no artifacts, as well as good reproducibility in the same order as that of the HT-EA analytical uncertainty (0.3‰).

6.
Funct Plant Biol ; 35(10): 1047-1058, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32688853

RESUMO

In this study, we assess the possibility of using ground penetrating radar (GPR) and electrical resistivity tomography (ERT) as indirect non-destructive techniques for root detection. Two experimental sites were investigated: a poplar plantation [mean height of plants 25.7 m, diameter at breast height (dbh) 33 cm] and a pinewood forest mainly composed of Pinus pinea L. and Pinus pinaster Ait. (mean height 17 m, dbh 29 cm). GPR measures were taken using antennas of 900 and 1500 MHz applied in square and circular grids. ERT was previously tested along 2-D lines, compared with GPR sections and direct observation of the roots, and then using a complete 3-D acquisition technique. Three-dimensional reconstructions using grids of electrodes centred and evenly spaced around the tree were used in all cases (poplar and pine), and repeated in different periods in the pine forest (April, June and September) to investigate the influence of water saturation on the results obtainable. The investigated roots systems were entirely excavated using AIR-SPADE Series 2000. In order to acquire morphological information on the root system, to be compared with the GPR and ERT, poplar and pine roots were scanned using a portable on ground scanning LIDAR. In test sections analysed around the poplar trees, GPR with a high frequency antenna proved to be able to detect roots with very small diameters and different angles, with the geometry of survey lines ruling the intensity of individual reflectors. The comparison between 3-D images of the extracted roots obtained with a laser scan data point cloud and the GPR profile proved the potential of high density 3-D GPR in mapping the entire system in unsaturated soil, with a preference for sandy and silty terrain, with problems arising when clay is predominant. Clutter produced by gravel and pebbles, mixed with the presence of roots, can also be sources of noise for the GPR signals. The work performed on the pine trees shows that the shape, distribution and volume of roots system, can be coupled to the 3-D electrical resistivity variation of the soil model map. Geophysical surveys can be a useful approach to root investigation in describing both the shape and behaviour of the roots in the subsoil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...