Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 71(8): 4563-79, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12874336

RESUMO

Bacillus anthracis (Ames strain) chromosome-derived open reading frames (ORFs), predicted to code for surface exposed or virulence related proteins, were selected as B. anthracis-specific vaccine candidates by a multistep computational screen of the entire draft chromosome sequence (February 2001 version, 460 contigs, The Institute for Genomic Research, Rockville, Md.). The selection procedure combined preliminary annotation (sequence similarity searches and domain assignments), prediction of cellular localization, taxonomical and functional screen and additional filtering criteria (size, number of paralogs). The reductive strategy, combined with manual curation, resulted in selection of 240 candidate ORFs encoding proteins with putative known function, as well as 280 proteins of unknown function. Proteomic analysis of two-dimensional gels of a B. anthracis membrane fraction, verified the expression of some gene products. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analyses allowed identification of 38 spots cross-reacting with sera from B. anthracis immunized animals. These spots were found to represent eight in vivo immunogens, comprising of EA1, Sap, and 6 proteins whose expression and immunogenicity was not reported before. Five of these 8 immunogens were preselected by the bioinformatic analysis (EA1, Sap, 2 novel SLH proteins and peroxiredoxin/AhpC), as vaccine candidates. This study demonstrates that a combination of the bioinformatic and proteomic strategies may be useful in promoting the development of next generation anthrax vaccine.


Assuntos
Vacinas contra Antraz/genética , Antígenos de Bactérias/genética , Antígenos de Superfície/genética , Bacillus anthracis/genética , Bacillus anthracis/imunologia , Adesinas Bacterianas/genética , Adesinas Bacterianas/imunologia , Animais , Vacinas contra Antraz/imunologia , Bacillus anthracis/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Biologia Computacional , Enzimas/genética , Enzimas/imunologia , Genes Bacterianos , Genoma Bacteriano , Humanos , Fases de Leitura Aberta , Proteoma , Virulência
2.
Biochem J ; 357(Pt 3): 795-802, 2001 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-11463350

RESUMO

Post-translational modifications were recently shown to be responsible for the short circulatory mean residence time (MRT) of recombinant human acetylcholinesterase (rHuAChE) [Kronman, Velan, Marcus, Ordentlich, Reuveny and Shafferman (1995) Biochem. J. 311, 959--967; Chitlaru, Kronman, Zeevi, Kam, Harel, Ordentlich, Velan and Shafferman (1998) Biochem. J. 336, 647--658; Chitlaru, Kronman, Velan and Shafferman (2001) Biochem. J. 354, 613--625], which is one of the major obstacles to the fulfilment of its therapeutic potential as a bioscavenger. In the present study we demonstrate that the MRT of rHuAChE can be significantly increased by the controlled attachment of polyethylene glycol (PEG) side chains to lysine residues. Attachment of as many as four PEG molecules to monomeric rHuAChE had minimal effects, if any, on either the catalytic activity (K(m)=0.09 mM and k(cat)=3.9 x 10(5) min(-1)) or the reactivity of the modified enzyme towards active-centre inhibitors, such as edrophonium and di-isopropyl fluorophosphate, or to peripheral-site ligands, such as propidium, BW284C51 and even the bulky snake-venom toxin fasciculin-II. The increase in MRT of the PEG-modified monomeric enzyme is linearly dependent, in the tested range, on the number of attached PEG molecules, as well as on their size. It appears that even low level PEG-conjugation can overcome the deleterious effect of under-sialylation on the pharmacokinetic performance of rHuAChE. At the highest tested ratio of attached PEG-20000/rHuAChE (4:1), an MRT of over 2100 min was attained, a value unmatched by any other known form of recombinant or native serum-derived AChE reported to date.


Assuntos
Acetilcolinesterase/metabolismo , Polietilenoglicóis/química , Acetilcolinesterase/química , Acetilcolinesterase/farmacocinética , Sequência de Aminoácidos , Animais , Meia-Vida , Humanos , Masculino , Taxa de Depuração Metabólica , Camundongos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
3.
Biochem J ; 354(Pt 3): 613-25, 2001 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11237866

RESUMO

Sialylated recombinant human acetylcholinesterase (rHuAChE), produced by stably transfected cells, is composed of a mixed population of monomers, dimers and tetramers and manifests a time-dependent circulatory enrichment of the higher-order oligomeric forms. To investigate this phenomenon further, homogeneous preparations of rHuAChE differing in their oligomerization statuses were generated: (1) monomers, represented by the oligomerization-impaired C580A-rHuAChE mutant, (2) wild-type (WT) dimers and (3) tetramers of WT-rHuAChE generated in vitro by complexation with a synthetic ColQ-derived proline-rich attachment domain ('PRAD') peptide. Three different series of each of these three oligoform preparations were produced: (1) partly sialylated, derived from HEK-293 cells; (2) fully sialylated, derived from engineered HEK-293 cells expressing high levels of sialyltransferase; and (3) desialylated, after treatment with sialidase to remove sialic acid termini quantitatively. The oligosaccharides associated with each of the various preparations were extensively analysed by matrix-assisted laser desorption ionization-time-of-flight MS. With the enzyme preparations comprising the fully sialylated series, a clear linear relationship between oligomerization and circulatory mean residence time (MRT) was observed. Thus monomers, dimers and tetramers exhibited MRTs of 110, 195 and 740 min respectively. As the level of sialylation decreased, this differential behaviour became less pronounced; eventually, after desialylation all oligoforms had the same MRT (5 min). These observations suggest that multiple removal systems contribute to the elimination of AChE from the circulation. Here we also demonstrate that by the combined modulation of sialylation and tetramerization it is possible to generate a rHuAChE displaying a circulatory residence exceeding that of all other known forms of native or recombinant human AChE.


Assuntos
Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Acetilcolinesterase/sangue , Animais , Sequência de Carboidratos , Linhagem Celular , Dimerização , Humanos , Cinética , Camundongos , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Proteoglicanas/sangue , Proteoglicanas/química , Proteoglicanas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferases/genética , Sialiltransferases/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transfecção
4.
J Biol Chem ; 275(38): 29488-502, 2000 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-10867010

RESUMO

The tetrameric form of native serum-derived bovine acetylcholinesterase is retained in the circulation for much longer periods (mean residence time, MRT = 1390 min) than recombinant bovine acetylcholinesterase (rBoAChE) produced in the HEK-293 cell system (MRT = 57 min). Extensive matrix-assisted laser desorption ionization-time of flight analyses established that the basic structures of the N-glycans associated with the native and recombinant enzymes are similar (the major species (50-60%) are of the biantennary fucosylated type and 20-30% are of the triantennary type), yet the glycan termini of the native enzyme are mostly capped with sialic acid (82%) and alpha-galactose (12%), whereas glycans of the recombinant enzyme exhibit a high level of exposed beta-galactose residues (50%) and a lack of alpha-galactose. Glycan termini of both fetal bovine serum and rBoAChE were altered in vitro using exoglycosidases and sialyltransferase or in vivo by a HEK-293 cell line developed specifically to allow efficient sialic acid capping of beta-galactose-exposed termini. In addition, the dimeric and monomeric forms of rBoAChE were quantitatively converted to tetramers by complexation with a synthetic peptide representing the human ColQ-derived proline-rich attachment domain. Thus by controlling both the level and nature of N-glycan capping and subunit assembly, we generated and characterized 9 distinct bovine AChE glycoforms displaying a 400-fold difference in their circulatory lifetimes (MRT = 3.5-1390 min). This revealed some general rules and a hierarchy of post-translation factors determining the circulatory profile of glycoproteins. Accordingly, an rBoAChE was generated that displayed a circulatory profile indistinguishable from the native form.


Assuntos
Acetilcolinesterase/sangue , Glicoproteínas/sangue , Processamento de Proteína Pós-Traducional , Acetilcolinesterase/genética , Acetilcolinesterase/farmacocinética , Animais , Bovinos , Linhagem Celular , Dimerização , Humanos , Ácido N-Acetilneuramínico
5.
Biochem J ; 336 ( Pt 3): 647-58, 1998 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-9841877

RESUMO

Sialylation of N-glycans associated with recombinant human acetylcholinesterase (rHuAChE) has a central role in determining its circulatory clearance rate. Human embryonal kidney 293 (HEK-293) cells, which are widely used for the expression of recombinant proteins, seem to be limited in their ability to sialylate overexpressed rHuAChE. High-resolution N-glycan structural analysis, by gel permeation, HPLC anion-exchange chromatography and high-pH anion-exchange chromatography (HPAEC), revealed that the N-glycans associated with rHuAChE produced in HEK-293 cells belong mainly to the complex-biantennary class and are only partly sialylated, with approx. 60% of the glycans being monosialylated. This partial sialylation characterizes rHuAChE produced by cells selected for high-level expression of the recombinant protein. In low-level producer lines, the enzyme exhibits a higher sialic acid content, suggesting that undersialylation of rHuAChE in high-level producer lines stems from a limited endogenous glycosyltransferase activity. To improve sialylation in HEK-293 cells, rat liver beta-galactoside alpha-2,6-sialyltransferase cDNA was stably transfected into cells expressing high levels of rHuAChE. rHuAChE produced by the modified cells displayed a significantly higher proportion of fully sialylated glycans as shown by sialic acid incorporation assays, direct measurement of sialic acid, and HPAEC glycan profiling. Genetically modified sialylated rHuAChE exhibited increased circulatory retention (the slow-phase half-life, t12beta, was 130 min, compared with 80 min for the undersialylated enzyme). Interestingly, the same increase in circulatory residence was observed when rHuAChE was subjected to extensive sialylation in vitro. The engineered HEK-293 cells in which the glycosylation machinery was modified might represent a valuable tool for the high level of expression of recombinant glycoproteins whose sialic acid content is important for their function or for pharmacokinetic behaviour.


Assuntos
Acetilcolinesterase/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Acetilcolinesterase/sangue , Acetilcolinesterase/genética , Animais , Antígenos CD/metabolismo , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Engenharia Genética , Glicosilação , Humanos , Taxa de Depuração Metabólica , Camundongos , Polissacarídeos/metabolismo , Ratos , Proteínas Recombinantes/sangue , Proteínas Recombinantes/metabolismo , Sialiltransferases/metabolismo , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...