Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e27655, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509890

RESUMO

Cancer is a complex disease that is caused by multiple genetic factors. Researchers have been studying protein domain mutations to understand how they affect the progression and treatment of cancer. These mutations can significantly impact the development and spread of cancer by changing the protein structure, function, and signalling pathways. As a result, there is a growing interest in how these mutations can be used as prognostic indicators for cancer prognosis. Recent studies have shown that protein domain mutations can provide valuable information about the severity of the disease and the patient's response to treatment. They may also be used to predict the response and resistance to targeted therapy in cancer treatment. The clinical implications of protein domain mutations in cancer are significant, and they are regarded as essential biomarkers in oncology. However, additional techniques and approaches are required to characterize changes in protein domains and predict their functional effects. Machine learning and other computational tools offer promising solutions to this challenge, enabling the prediction of the impact of mutations on protein structure and function. Such predictions can aid in the clinical interpretation of genetic information. Furthermore, the development of genome editing tools like CRISPR/Cas9 has made it possible to validate the functional significance of mutants more efficiently and accurately. In conclusion, protein domain mutations hold great promise as prognostic and predictive biomarkers in cancer. Overall, considerable research is still needed to better define genetic and molecular heterogeneity and to resolve the challenges that remain, so that their full potential can be realized.

2.
Database (Oxford) ; 2021(2021)2021 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-34791106

RESUMO

Protein domains are functional and structural units of proteins. They are responsible for a particular function that contributes to protein's overall role. Because of this essential role, the majority of the genetic variants occur in the domains. In this study, the somatic mutations across 21 cancer types were mapped to the individual protein domains. To map the mutations to the domains, we employed the whole human proteome to predict the domains in each protein sequence and recognized about 149 668 domains. A novel Perl-API program was developed to convert the protein domain positions into genomic positions, and users can freely access them through GitHub. We determined the distribution of protein domains across 23 chromosomes with the help of these genomic positions. Interestingly, chromosome 19 has more number of protein domains in comparison with other chromosomes. Then, we mapped the cancer mutations to all the protein domains. Around 46-65% of mutations were mapped to their corresponding protein domains, and significantly mutated domains for all the cancer types were determined using the local false discovery ratio (locfdr). The chromosome positions for all the protein domains can be verified using the cross-reference ensemble database. Database URL: https://dcmp.vit.ac.in/.


Assuntos
Desoxicitidina Monofosfato , Neoplasias , Humanos , Proteínas Mutantes , Neoplasias/genética , Domínios Proteicos , Proteoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...