Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 34(25)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36944230

RESUMO

Two-dimensional (2D) materials and their heterostructures exhibit intriguing optoelectronic properties; thus, they are good platforms for exploring fundamental research and further facilitating real device applications. The key is to preserve the high quality and intrinsic properties of 2D materials and their heterojunction interface even in production scale during the transfer and assembly process so as to apply in semiconductor manufacturing field. In this study, we successfully adopted a wet transfer existing method to separate mediator-assisted wafer-scale from SiO2/Si growing wafer for the first time with intermediate annealing to fabricate wafer-scale MoS2/h-BN and WS2/h-BN heterostructures on a SiO2/Si wafer. Interestingly, the high-quality wafer-scale 2D material heterostructure optical properties were enhanced and confirmed by Raman and photoluminescence spectroscopy. Our approach can be applied to other 2D materials and expedite mass production for industrial applications.

2.
Micromachines (Basel) ; 14(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36838061

RESUMO

High-dispersion polystyrene (PS) microspheres with monodispersity were successfully synthesized by the non-emulsification polymerization method, and three-dimensional (3D) photonic crystals of PS microspheres were fabricated by electrophoretic self-assembly (EPSA). The metal nickel inverse opal structure (IOS) photonic crystal, of which the structural thickness can be freely adjusted via electrochemical deposition (ECD), and subsequently, MnS/MoS2/Ni-IOS specimens were also prepared by ECD. Excellent specific capacitance values (1880 F/g) were obtained at a charge current density of 5 A/g. The samples in this experiment were tested for 2000 cycles of cycle life and still retained a reasonably good level of 76.6% of their initial capacitance value. In this study, the inverse opal structure photonic crystal substrate was used as the starting point, and then the microelectrode material for the MnS/MoS2/Ni-IOS supercapacitor was synthesized. Our findings show that the MnS/MoS2/Ni-IOS microelectrode makes a viable technical contribution to the design and fabrication of high-performance supercapacitors.

3.
Sci Rep ; 10(1): 14873, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913187

RESUMO

Despite significant progress in the fabrication and application of semiconductor materials for optical emitters and sensors, few materials can cover the cyan-gap between 450 and 500 nm. We here introduce a robust and facile method to deposit amorphous Sb2S3 films with a bandgap of 2.8 eV. By exploiting the tunable functionality of graphene, a two-dimensional material, efficient deposition from a chemical was achieved. Ozone-generated defects in the graphene were shown to be required to enhance the morphology and quality of the material and comprehensive characterization of the seed layer and the Sb2S3 film were applied to design an optimal deposition process. The resulting material exhibits efficient carrier transport and high photodetector performance as evidenced by unprecedented responsivity and detectivity in semiconductor/graphene/glass vertical heterostructures. (112 A/W, 2.01 × 1012 Jones, respectively).

4.
ACS Appl Mater Interfaces ; 11(6): 6384-6388, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30652856

RESUMO

Lateral heterojunctions in two-dimensional (2D) materials have demonstrated potential for high-performance sensors because of the unique electrostatic conditions at the interface. The increased complexity of producing such structures, however, has prevented their widespread use. We here demonstrate the simple and scalable fabrication of heterojunctions by a one-step synthesis process that yields photodetectors with superior device performance. Catalytic conversion of a solid precursor at optimized conditions was found to produce lateral nanostructured junctions between graphene domains and 3 nm thin amorphous carbon films. Carrier transport in these heterojunctions was found to proceed by minimizing the path through the amorphous carbon barriers, which results in a self-selective Schottky emission process with high uniformity and low emission barriers. We demonstrate the potential of thus produced heterojunctions by realizing a photodetector that combines an ultrahigh detectivity of 1013 Jones with microsecond response time, which represents the highest performance of 2D material heterojunction devices. These attractive features are retained even for millimeter-scale devices, and the demonstrated ability to produce transparent, patterned, and flexible sensors extends lateral heterojunction sensors toward wearable and large-scale electronics.

5.
RSC Adv ; 9(50): 29105-29108, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35528442

RESUMO

Barrier-guided CVD growth could provide a new route to printed electronics by combining high quality 2D materials synthesis with scalable and cost-effective deposition methods. Unfortunately, we observe the limited stability of the barrier at growth conditions which results in its removal within minutes due to hydrogen etching. This work describes a route towards enhancing the stability of an ink-jet deposited barrier for high resolution patterning of high quality graphene. By modifying the etching kinetics under confinement, the barrier film could be stabilized and high resolution barriers could be retained even after 6 hours of graphene growth. Thus produced microscopic graphene devices exhibited an increase in conductivity by 6 orders of magnitude and a decrease in defectiveness by 48 times yielding performances that are superior to devices produced by traditional lithographical patterning which indicates the potential of our approach for future electronic applications.

6.
J Phys Chem Lett ; 9(4): 710-716, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29365270

RESUMO

Recent studies have shown the presence of an amorphous surface layer in nominally crystalline silicon nanocrystals (SiNCs) produced by some of the most common synthetic techniques. The amorphous surface layer can serve as a source of deep charge traps, which can dramatically affect the electronic and photophysical properties of SiNCs. We present results of a scanning tunneling microscopy/scanning tunneling spectroscopy (STM/STS) study of individual intragap states observed on the surfaces of hydrogen-passivated SiNCs deposited on the Au(111) surface. STS measurements show that intragap states can be formed reversibly when appropriate voltage-current pulses are applied to individual SiNCs. Analysis of STS spectra suggests that the observed intragap states are formed via self-trapping of charge carriers injected into SiNCs from the STM tip. Our results provide a direct visualization of the charge trap formation in individual SiNCs, a level of detail which until now had been achieved only in theoretical studies.

7.
J Chem Phys ; 144(24): 241102, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27369490

RESUMO

We present results of a scanning tunneling spectroscopy (STS) study of the impact of dehydrogenation on the electronic structures of hydrogen-passivated silicon nanocrystals (SiNCs) supported on the Au(111) surface. Gradual dehydrogenation is achieved by injecting high-energy electrons into individual SiNCs, which results, initially, in reduction of the electronic bandgap, and eventually produces midgap electronic states. We use theoretical calculations to show that the STS spectra of midgap states are consistent with the presence of silicon dangling bonds, which are found in different charge states. Our calculations also suggest that the observed initial reduction of the electronic bandgap is attributable to the SiNC surface reconstruction induced by conversion of surface dihydrides to monohydrides due to hydrogen desorption. Our results thus provide the first visualization of the SiNC electronic structure evolution induced by dehydrogenation and provide direct evidence for the existence of diverse dangling bond states on the SiNC surfaces.

8.
J Phys Chem Lett ; 7(6): 1047-54, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26938674

RESUMO

The photophysical properties of silicon semiconductor nanocrystals (SiNCs) are extremely sensitive to the presence of surface chemical defects, many of which are easily produced by oxidation under ambient conditions. The diversity of chemical structures of such defects and the lack of tools capable of probing individual defects continue to impede understanding of the roles of these defects in SiNC photophysics. We use scanning tunneling spectroscopy to study the impact of surface defects on the electronic structures of hydrogen-passivated SiNCs supported on the Au(111) surface. Spatial maps of the local electronic density of states (LDOS) produced by our measurements allowed us to identify locally enhanced defect-induced states as well as quantum-confined states delocalized throughout the SiNC volume. We use theoretical calculations to show that the LDOS spectra associated with the observed defects are attributable to Si-O-Si bridged oxygen or Si-OH surface defects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...