Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 306(10): C879-86, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24598362

RESUMO

Skeletal muscle is the major tissue disposing of dietary glucose, a function regulated by insulin-elicited signals that impart mobilization of GLUT4 glucose transporters to the plasma membrane. This phenomenon, also central to adipocyte biology, has been the subject of intense and productive research for decades. We focus on muscle cell studies scrutinizing insulin signals and vesicle traffic in a spatiotemporal manner. Using the analogy of an integrated circuit to approach the intersection between signal transduction and vesicle mobilization, we identify signaling relays ("software") that engage structural/mechanical elements ("hardware") to enact the rapid mobilization and incorporation of GLUT4 into the cell surface. We emphasize how insulin signal transduction switches from tyrosine through lipid and serine phosphorylation down to activation of small G proteins of the Rab and Rho families, describe key negative regulation step of Rab GTPases through the GTPase-activating protein activity of the Akt substrate of 160 kDa (AS160), and focus on the mechanical effectors engaged by Rabs 8A and 10 (the molecular motor myosin Va), and the Rho GTPase Rac1 (actin filament branching and severing through Arp2/3 and cofilin). Finally, we illustrate how actin filaments interact with myosin 1c and α-Actinin4 to promote vesicle tethering as preamble to fusion with the membrane.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Miócitos de Músculo Liso/metabolismo , Vesículas Transportadoras/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinina/genética , Actinina/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica , Transportador de Glucose Tipo 4/genética , Humanos , Músculo Esquelético/citologia , Miócitos de Músculo Liso/citologia , Miosinas/genética , Miosinas/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
2.
J Biol Chem ; 288(24): 17520-31, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23640896

RESUMO

Insulin activates a cascade of signaling molecules, including Rac-1, Akt, and AS160, to promote the net gain of glucose transporter 4 (GLUT4) at the plasma membrane of muscle cells. Interestingly, constitutively active Rac-1 expression results in a hormone-independent increase in surface GLUT4; however, the molecular mechanism and significance behind this effect remain unresolved. Using L6 myoblasts stably expressing myc-tagged GLUT4, we found that overexpression of constitutively active but not wild-type Rac-1 sufficed to drive GLUT4 translocation to the membrane of comparable magnitude with that elicited by insulin. Stimulation of endogenous Rac-1 by Tiam1 overexpression elicited a similar hormone-independent gain in surface GLUT4. This effect on GLUT4 traffic could also be reproduced by acutely activating a Rac-1 construct via rapamycin-mediated heterodimerization. Strategies triggering Rac-1 "superactivation" (i.e. to levels above those attained by insulin alone) produced a modest gain in plasma membrane phosphatidylinositol 3,4,5-trisphosphate, moderate Akt activation, and substantial AS160 phosphorylation, which translated into GLUT4 translocation and negated the requirement for IRS-1. This unique signaling capacity exerted by Rac-1 superactivation bypassed the defects imposed by JNK- and ceramide-induced insulin resistance and allowed full and partial restoration of the GLUT4 translocation response, respectively. We propose that potent elevation of Rac-1 activation alone suffices to drive insulin-independent GLUT4 translocation in muscle cells, and such a strategy might be exploited to bypass signaling defects during insulin resistance.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Esfingosina/análogos & derivados , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Polaridade Celular , Ativação Enzimática , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Insulina/fisiologia , Proteínas de Neoplasias/metabolismo , Fosfatidilinositóis/metabolismo , Fosforilação , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais , Esfingosina/farmacologia , Esfingosina/fisiologia , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T
3.
Mol Biol Cell ; 21(20): 3529-39, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20739464

RESUMO

GLUT4 vesicles are actively recruited to the muscle cell surface upon insulin stimulation. Key to this process is Rac-dependent reorganization of filamentous actin beneath the plasma membrane, but the underlying molecular mechanisms have yet to be elucidated. Using L6 rat skeletal myoblasts stably expressing myc-tagged GLUT4, we found that Arp2/3, acting downstream of Rac GTPase, is responsible for the cortical actin polymerization evoked by insulin. siRNA-mediated silencing of either Arp3 or p34 subunits of the Arp2/3 complex abrogated actin remodeling and impaired GLUT4 translocation. Insulin also led to dephosphorylation of the actin-severing protein cofilin on Ser-3, mediated by the phosphatase slingshot. Cofilin dephosphorylation was prevented by strategies depolymerizing remodeled actin (latrunculin B or p34 silencing), suggesting that accumulation of polymerized actin drives severing to enact a dynamic actin cycling. Cofilin knockdown via siRNA caused overwhelming actin polymerization that subsequently inhibited GLUT4 translocation. This inhibition was relieved by reexpressing Xenopus wild-type cofilin-GFP but not the S3E-cofilin-GFP mutant that emulates permanent phosphorylation. Transferrin recycling was not affected by depleting Arp2/3 or cofilin. These results suggest that cofilin dephosphorylation is required for GLUT4 translocation. We propose that Arp2/3 and cofilin coordinate a dynamic cycle of actin branching and severing at the cell cortex, essential for insulin-mediated GLUT4 translocation in muscle cells.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Membrana Celular/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Células Musculares/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/deficiência , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Eletroforese em Gel Bidimensional , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas dos Microfilamentos/metabolismo , Células Musculares/citologia , Células Musculares/efeitos dos fármacos , Monoéster Fosfórico Hidrolases , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Transferrina/metabolismo , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...