Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(99): 14653-14656, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37991800

RESUMO

A new class of fluorinated cyclopenta[2,1-b:3,4-b']dithiophene (CPDT)-based small molecules, namely YC-oF, YC-mF, and YC-H, are demonstrated as hole-transporting materials (HTMs) for high-performance perovskite solar cells (PSCs). PSCs employing YC-oF as the HTM delivered an excellent efficiency of 22.41% with encouraging long-term stability.

2.
Chem Asian J ; 18(20): e202300681, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37694942

RESUMO

In this work, we have successfully synthesized 15 new examples (LLA01-06; LinLi01-10) of small-molecule hole-transporting materials (HTM) using the less explored indolocarbazole (ICbz) as core moiety. Different from previously reported ICbz HTMs, LinLi01-10 exhibit new molecular designs in which 3,4-ethylenedioxythiophene (EDOT) units are inserted as crucial π-spacers and fluorine atoms are introdcued into end-group molecules. These substantially improve the materials solubility and device power conversion efficiencies (PCEs) while fabricated in perovskite solar cells (PSC). More importantly, LinLi01-10 are generated by a sustainable synthetic approach involving the use of straightforward C-H/C-Br couplings as key transformations, thus avoiding additional synthetic transformations including halogenation and borylation reactions called substrate prefunctionalizations usually required in Suzuki reactions. Most HTM molecules can be purified simply by reprecipitations instead of conducting column chromatography. In contrast to LLA01-06 without additional EDOT moieties, PSC devices using LinLi01-10 as hole-transport layers display promising PCEs of up to 17.5 %. Interestingly, PSC devices employing seven of the LinLi01-10 as hole-transport molecules, respectively, are all able to show an immediate >10 % PCE (t=0) without any device oxidation/aging process that is necessary for the commercial spiro-OMeTAD based PSCs.

3.
Nanomaterials (Basel) ; 12(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35957082

RESUMO

In recent years, additive engineering has received considerable attention for the fabrication of high-performance perovskite solar cells (PSCs). In this study, a non-ionic surfactant, polyoxyethylene (20) sorbitan monolaurate (Tween 20), was added as an additive into the MAPbI3 perovskite layer, and the thermal-assisted blade-coating method was used to fabricate a high-quality perovskite film. The Tween 20 effectively passivated defects and traps in the MAPbI3 perovskite films. Such a film fabricated with an appropriate amount of Tween 20 on the substrate showed a higher photoluminescence (PL) intensity and longer carrier lifetime. At the optimal concentration of 1.0 mM Tween 20, the performance of the PSC was apparently enhanced, and the champion PSC demonstrated a PCE of 18.80%. Finally, this study further explored and compared the effect on the device performance and ambient stability of the MAPbI3 perovskite film prepared by the spin-coating method and the thermal-assisted blade coating.

4.
Polymers (Basel) ; 14(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35458333

RESUMO

In this work, two novel tetra-substituted X-shaped molecules X1 and X2 that were constructed with anthracene as the central core and arylamine as the donor groups have been synthesized. The HTMs X1 and X2 were synthesized in two steps from industrially accessible and moderately reasonable beginning reagents. These new HTMs are described in terms of utilization of light absorption, energy level, thermal properties, hole mobility (µh), and film-forming property. The photovoltaic performances of these HTMs were effectively assessed in perovskite solar cells (PSCs). The devices based on these HTMs accomplished an overall efficiency of 16.10% for X1 and 10.25% for X2 under standard conditions (AM 1.5 G and 100 mW cm-2). This precise investigation provides another perspective on the use of HTMs in PSCs with various device configurations.

5.
Polymers (Basel) ; 13(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34883754

RESUMO

In this study, polycaprolactone (PCL)- and poly(acrylic acid) (PAA)-based electrospun nanofibers were prepared for the carriers of antimicrobials and designed composite nanofiber mats for chronic wound care. The PCL- and PAA-based electrospun nanofibers were prepared through in situ polymerization starting from PCL and acrylic acid (AA). Different amounts of AA were introduced to improve the hydrophilicity of the PCL electrospun nanofibers. A compatibilizer and a photoinitiator were then added to the electrospinning solution to form a grafted structure composed of PCL and PAA (PCL-g-PAA). The grafted PAA was mainly located on the surface of a PCL nanofiber. The optimization of the composition of PCL, AA, compatibilizer, and photoinitiator was studied, and the PCL-g-PAA electrospun nanofibers were characterized through scanning electron microscopy and 1H-NMR spectroscopy. Results showed that the addition of AA to PCL improved the hydrophilicity of the electrospun PCL nanofibers, and a PCL/AA ratio of 80/20 presented the best composition and had smooth nanofiber morphology. Moreover, poly[2 -(tert-butylaminoethyl) methacrylate]-grafted graphene oxide nanosheets (GO-g-PTA) functioned as an antimicrobial agent and was used as filler for PCL-g-PAA nanofibers in the preparation of composite nanofiber mats, which exerted synergistic effects promoted by the antibacterial properties of GO-g-PTA and the hydrophilicity of PCL-g-PAA electrospun nanofibers. Thus, the composite nanofiber mats had antibacterial properties and absorbed body fluids in the wound healing process, thereby promoting cell proliferation. The biodegradation of the PCL-g-PAA electrospun nanofibers also demonstrated an encouraging result of three-fold weight reduction compared to the neat PCL nanofiber. Our findings may serve as guidelines for the fabrication of electrospun nanofiber composites that can be used mats for chronic wound care.

6.
Nanomaterials (Basel) ; 11(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34443958

RESUMO

Nowadays, a dye-sensitized solar cell (DSSC) attracts attention to its development widely due to its several advantages, such as simple processes, low costs, and flexibility. In this work, we demonstrate the difference in device structures between small size and large size cells (5 cm × 5 cm, 10 cm × 10 cm and 10 cm × 15 cm). The design of the photoanode and dye-sensitized process plays important roles in affecting the cell efficiency and stability. The effects of the TiO2 electrode, using TiCl4(aq) pretreatment and post-treatment processes, are also discussed, whereas, the open-circuit voltage (Voc), short-circuit current density (Jsc), and module efficiency are successfully improved. Furthermore, the effects on module performances by some factors, such as dye solution concentration, dye soaking temperature, and electrolyte injection method are also investigated. We have demonstrated that the output power of a 5 cm × 5 cm DSSC module increases from 86.2 mW to 93.7 mW, and the module efficiency achieves an outstanding performance of 9.79%. Furthermore, enlarging the DSSC modules to two sizes (10 cm × 10 cm and 10 cm × 15 cm) and comparing the performance with different module designs (C-DSSC and S-DSSC) also provides the specific application of polymer sealing and preparing high-efficiency large-area DSSC modules.

7.
Nanomaterials (Basel) ; 11(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207375

RESUMO

This study improved quality of CH3NH3PbI3 (MAPbI3) perovskite films by delaying thermal annealing in the spin coating process and introducing KI and I2 to prepare MAPbI3 films that were low in defects for high-efficiency perovskite solar cells. The influences of delayed thermal annealing time after coating the MAPbI3 perovskite layer on the crystallized perovskite, the morphology control of MAPbI3 films, and the photoelectric conversion efficiency of solar cells were investigated. The optimal delayed thermal annealing time was found to be 60 min at room temperature. The effect of KI/I2 additives on the growth of MAPbI3 films and the corresponding optimal delayed thermal annealing time were further investigated. The addition of KI/I2 can improve perovskite crystallinity, and the conductivity and carrier mobility of MAPbI3 films. Under optimized conditions, the photoelectric conversion efficiency of MAPbI3 perovskite solar cells can reach 19.36% under standard AM1.5G solar illumination of 100 mW/cm2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...