Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 139: 108869, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37285875

RESUMO

The mucosal microbiome plays a role in regulating host health. The research conducted in humans and mice has governed and detailed the information on microbiome-host immunity interactions. Teleost fish, different from humans and mice, lives in and relies on the aquatic environment and is subjected to environmental variation. The growth of teleost mucosal microbiome studies, the majority in the gastrointestinal tract, has emphasized the essential role of the teleost microbiome in growth and health. However, research in the teleost external surface microbiome, as the skin microbiome, has just started. In this review, we examine the general findings in the colonization of the skin microbiome, how the skin microbiome is subjected to environmental change and the reciprocal regulation with the host immune system, and the current challenges that potential study models can address. The information collected from teleost skin microbiome-host immunity research would help future teleost culturing from the potential parasitic infestation and bacterial infection as foreseeing growing threats.


Assuntos
Infecções Bacterianas , Microbiota , Humanos , Animais , Camundongos , Pele , Mucosa , Trato Gastrointestinal
2.
Reprod Med Biol ; 22(1): e12495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36699957

RESUMO

Purpose: The cervicovaginal microbiota is essential for maintaining the health of the female reproductive tract. However, whether cervicovaginal microbiota status prior to frozen embryo transfer (FET) associates with pregnancy outcomes is largely unexplored. Methods: Cervical mucus from 29 women who had undergone FET was collected. Microbial composition was analyzed using 16 S rRNA gene sequence to assess the correlation to the pregnancy outcomes. Results: CST-categorized Lactobacillus was the most dominant (41.71%) in the pregnant group, while CST-IV-based and BV-related Gardnerella (34.96%) prevailed in the non-pregnant group. The average abundance of Gardnerella compared non-pregnant to pregnant women was the highest (34.96% vs. 4.22%, p = 0.0015) among other CST-IV indicator bacteria. Multivariate analysis revealed that CST-IV-related bacteria have a significantly adverse effect on ongoing pregnancy outcomes (odds ratio, 0.083; 95% confidence index, 0.012-0.589, p = 0.013*). Conclusions: The study found that the CST-IV microbiota, with significantly increasing Gardnerella and the loss of Lactobacilli as the dominant bacteria, can potentially contribute to pregnancy failure. Therefore, dysbiotic microbiota may be a risk factor in women undergoing FET. Assessing the health of the cervicovaginal microbiota prior to FET would enable couples to make a more thoughtful decision on the timing and might improve pregnancy outcomes.

3.
Microbiol Resour Announc ; 11(9): e0040822, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35993779

RESUMO

Aeromonas hydrophila is the most common opportunistic pathogen that plagues freshwater and euryhaline fishponds. Here, we present the complete genome sequence of A. hydrophila strain LP0103, which was isolated from a bacterial septicemia outbreak among suckermouth catfish (Pterygoplichthys pardalis) at Lotus Pond in Kaohsiung City, Taiwan.

4.
Nano Lett ; 21(6): 2505-2511, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33689385

RESUMO

Crystalline two-dimensional (2D) superconductors (SCs) with low carrier density are an exciting new class of materials in which electrostatic gating can tune superconductivity, electronic interactions play a prominent role, and electrical transport properties may directly reflect the topology of the Fermi surface. Here, we report the dramatic enhancement of superconductivity with decreasing thickness in semimetallic Td-MoTe2, with critical temperature (Tc) increasing up to 7.6 K for monolayers, a 60-fold increase with respect to the bulk Tc. We show that monolayers possess a similar electronic structure and density of states (DOS) as the bulk, implying that electronic interactions play a strong role in the enhanced superconductivity. Reflecting the low carrier density, the critical temperature, magnetic field, and current density are all tunable by an applied gate voltage. The response to high in-plane magnetic fields is distinct from that of other 2D SCs and reflects the canted spin texture of the electron pockets.

5.
Nano Lett ; 17(8): 4831-4839, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28661680

RESUMO

Organic-inorganic hybrid perovskites have shown great potential as building blocks for low-cost optoelectronics for their exceptional optical and electrical properties. Despite the remarkable progress in device demonstration, fundamental understanding of the physical processes in halide perovskites remains limited, especially the unusual electronic behaviors such as the current-voltage hysteresis and the switchable photovoltaic effect. These phenomena are of particular interests for being closely related to device functionalities and performance. In this work, a microscopic picture of electric fields in halide perovskite thin films was obtained using scanning laser microscopy. Unlike conventional semiconductors, distribution of the built-in electric fields in the halide perovskite evolves dynamically under the stimulation of external biases. The observations can be well explained using a model based on field-assisted ion migration, indicating that the mechanism responsible for the evolving charge transport observed in this material is not purely electronic. The anomalous dynamic responses to the applied bias are found to be effectively suppressed by operating the devices at reduced temperature or processing the materials at elevated temperature, which provide potential strategies for designing and creating halide perovskites with more stable charge transport properties in the development of viable perovskite-based optoelectronics.

6.
Phys Chem Chem Phys ; 17(41): 27317-27, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26280744

RESUMO

Microwave chemistry has revolutionized synthetic methodology for the preparation of organics, pharmaceuticals, materials, and peptides. The enhanced reaction rates commonly observed in a microwave have led to wide speculation about the function of molecular microwave absorption and whether the absorption leads to microwave specific effects and enhanced molecular heating. The comparison of theoretical modeling, reactor vessel design, and dielectric spectroscopy allows the nuance of the interaction to be directly understood. The study clearly shows an unaltered silicon carbide vessel allows measurable microwave penetration and therefore, molecular absorption of the microwave photons by the reactants within the reaction vessel cannot be ignored when discussing the role of molecular heating in enhanced molecular reactivity for microwave synthesis. The results of the study yield an improved microwave reactor vessel design that eliminates microwave leakage into the reaction volume by incorporating a noble metal surface layer onto a silicon carbide reaction vessel. The systematic study provides the necessary theory and measurements to better inform the arguments in the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...