Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 44(10): 3359-3376, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34570292

RESUMO

Soil degradation, which is linked to poor nutrient management, remains a major constraint to sustained crop production in smallholder urban agriculture (UA) in sub-Saharan Africa (SSA). While organic nutrient resources are often used in UA to complement mineral fertilizers in soil fertility management, they are usually scarce and of poor quality to provide optimum nutrients for crop uptake. Alternative soil nutrient management options are required. This study, therefore, evaluates the short-term benefits of applying an aluminium-based water treatment residual (Al-WTR), in combination with compost and inorganic P fertilizer, on soil chemical properties, and maize (Zea mays L.) productivity and nutrient uptake. An eight-week greenhouse experiment was established with 12 treatments consisting of soil, Al-WTR and compost (with or without P fertilizer). The co-amendment (10% Al-WTR + 10% compost) produced maize shoot biomass of 3.92 ± 0.16 g at 5 weeks after emergence, significantly (p < 0.05) out-yielding the unamended control which yielded 1.33 ± 0.17 g. The addition of P fertilizer to the co-amendment further increased maize shoot yield by about twofold (7.23 ± 0.07 g). The co-amendment (10% Al-WTR + 10% C) with P increased maize uptake of zinc (Zn), copper (Cu) and manganese (Mn), compared with 10% C + P. Overall, the results demonstrate that combining Al-WTR, compost and P fertilizer increases maize productivity and micronutrient uptake in comparison with single amendments of compost and fertilizer. The enhanced micronutrient uptake can potentially improve maize grain quality, and subsequently human nutrition for the urban population of SSA, partly addressing the UN's Sustainable Development Goal number 3 of improving diets.


Assuntos
Oligoelementos , Purificação da Água , Agricultura/métodos , Alumínio , Cobre/metabolismo , Fertilizantes/análise , Humanos , Manganês , Micronutrientes , Minerais/metabolismo , Nitrogênio/análise , Solo/química , Zea mays/metabolismo , Zinco/metabolismo
2.
Biochem Soc Trans ; 32(Pt3): 524-8, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15157177

RESUMO

We initiated a proteomic study as part of a programme aimed at discovering novel functions of the plant cell wall. Cell-wall fragments isolated from cell-suspension cultures of Arabidopsis thaliana were stripped of protein sequentially using CaCl2 and a urea-based buffer. The protein fractions were separated by two-dimensional gel electrophoresis and individual proteins were identified by MS. We identified a number of proteins considered to be resident in other organelles but not the cell wall on the basis of their classical biological function. These included citrate synthase, which is known to be targeted to mitochondria, peroxisomes and glyoxysomes, and luminal binding protein, which is an ER (endoplasmic reticulum)-resident protein. Searches of the Arabidopsis database revealed that there are several genes encoding putative citrate synthase and luminal binding protein. We have also performed detailed analyses of the protein sequences and this paper shows how each one contains encrypted targeting information that results in the export of the protein to the extracellular matrix. We discuss the presence of alternative non-classical secretory pathways in plants.


Assuntos
Proteínas de Arabidopsis/análise , Arabidopsis/metabolismo , Parede Celular/metabolismo , Proteoma , Sequência de Aminoácidos , Cloreto de Cálcio/farmacologia , Parede Celular/fisiologia , Eletroforese em Gel Bidimensional , Retículo Endoplasmático/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas/química , Transdução de Sinais
3.
Trends Plant Sci ; 4(4): 155-160, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10322550

RESUMO

Resistance genes allow plants to recognize specific pathogens. Recognition results in the activation of a variety of defence responses, including localized programmed cell death (the hypersensitive response), synthesis of pathogenesis-related proteins and induction of systemic acquired resistance. These responses are co-ordinated by a branching signal transduction pathway. In tobacco, one branch activates virus resistance, and might require the mitochondrial alternative oxidase to operate. Here we discuss the evidence for this virus-specific branch of the transduction pathway and assess what must be done to further understand virus resistance and the role of the alternative oxidase in its induction.

4.
Plant Cell ; 10(9): 1489-98, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9724695

RESUMO

Salicylhydroxamic acid (SHAM), an inhibitor of alternative oxidase (AOX), blocks salicylic acid-induced resistance to tobacco mosaic virus (TMV) but does not inhibit pathogenesis-related PR-1 protein synthesis or resistance to fungal and bacterial pathogens. We found that the synthetic resistance-inducing chemical 2, 6-dichloroisonicotinic acid also induced Aox transcript accumulation and SHAM-sensitive resistance to TMV. The respiratory inhibitors antimycin A and KCN also induced Aox transcript accumulation and resistance to TMV but did not induce PR-1 accumulation. Tobacco plants of the TMV-resistant cultivar Samsun NN transformed with the salicylic acid hydroxylase (nahG) gene could no longer restrict virus to the inoculation site, resulting in spreading necrosis instead of discrete necrotic lesions. Treatment with KCN restored TMV localization and normal lesion morphology. SHAM antagonized this effect, allowing virus escape and spreading necrosis to resume. The results demonstrate the importance of the SHAM-sensitive (potentially AOX-dependent) signal transduction pathway in mediating virus localization early in the hypersensitive response.

5.
Plant Cell ; 9(4): 547-557, 1997 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12237364

RESUMO

Salicylic acid (SA) induces resistance to all plant pathogens, including bacteria, fungi, and viruses, but the mechanism by which SA engenders resistance to viruses is not known. Pretreatment of tobacco mosaic virus (TMV)-susceptible (nn genotype) tobacco tissue with SA reduced the levels of viral RNAs and viral coat protein accumulating after inoculation with TMV. Viral RNAs were not affected equally, suggesting that SA treatment interferes with TMV replication. Salicylhydroxamic acid (SHAM), an inhibitor of the mitochondrial alternative oxidase, antagonized both SA-induced resistance to TMV in nn genotype plants and SA-induced acquired resistance in resistant (NN genotype) tobacco. SHAM did not inhibit induction of the PR-1 pathogenesis-related protein or induction of resistance to Erwinia carotovora or Botrytis cinerea by SA. This indicates that SA induces resistance to TMV via a novel SHAM-sensitive signal transduction pathway (potentially involving alternative oxidase), which is distinct from that leading to resistance to bacteria and fungi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...