Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Viruses ; 14(4)2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35458511

RESUMO

BACKGROUND: Studies have linked bats to outbreaks of viral diseases in human populations such as SARS-CoV-1 and MERS-CoV and the ongoing SARS-CoV-2 pandemic. METHODS: We carried out a longitudinal survey from August 2020 to July 2021 at two sites in Zimbabwe with bat-human interactions: Magweto cave and Chirundu farm. A total of 1732 and 1866 individual bat fecal samples were collected, respectively. Coronaviruses and bat species were amplified using PCR systems. RESULTS: Analysis of the coronavirus sequences revealed a high genetic diversity, and we identified different sub-viral groups in the Alphacoronavirus and Betacoronavirus genus. The established sub-viral groups fell within the described Alphacoronavirus sub-genera: Decacovirus, Duvinacovirus, Rhinacovirus, Setracovirus and Minunacovirus and for Betacoronavirus sub-genera: Sarbecoviruses, Merbecovirus and Hibecovirus. Our results showed an overall proportion for CoV positive PCR tests of 23.7% at Chirundu site and 16.5% and 38.9% at Magweto site for insectivorous bats and Macronycteris gigas, respectively. CONCLUSIONS: The higher risk of bat coronavirus exposure for humans was found in December to March in relation to higher viral shedding peaks of coronaviruses in the parturition, lactation and weaning months of the bat populations at both sites. We also highlight the need to further document viral infectious risk in human/domestic animal populations surrounding bat habitats in Zimbabwe.


Assuntos
Alphacoronavirus , COVID-19 , Quirópteros , Animais , COVID-19/epidemiologia , Evolução Molecular , Feminino , Genoma Viral , Filogenia , SARS-CoV-2/genética , Zimbábue/epidemiologia
2.
Ecol Evol ; 12(2): e8612, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35169458

RESUMO

Habitat alterations resulting from land-use change are major drivers of global biodiversity losses. In Africa, these threats are especially severe. For instance, demand to convert land into agricultural uses is leading to increasing areas of drylands in southern and central Africa being transformed for agriculture. In Zimbabwe, a land reform programme provided an opportunity to study the biodiversity response to abrupt habitat modification in part of a 91,000 ha dryland area of semi-natural savannah used since 1930 for low-level cattle ranching. Small-scale subsistence farms were created during 2001-2002 in 65,000 ha of this area, with ranching continuing in the remaining unchanged area. We measured the compositions of bird communities in farmed and ranched land over 8 years, commencing one decade after subsistence farms were established. Over the study period, repeated counts were made along the same 45 transects to assess species' population changes that may have resulted from trait-filtering responses to habitat disturbance. In 2012, avian species' richness was substantially higher (+8.8%) in the farmland bird community than in the unmodified ranched area. Temporal trends over the study period showed increased species' richness in the ranched area (+12.3%) and farmland (+6.8%). There were increased abundances in birds of most sizes, and in all feeding guilds. New species did not add new functional traits, and no species with distinctive traits were lost in either area. As a result, species' diversity reduced, and functional redundancy increased by 6.8% in ranched land. By 2020, two decades after part of the ranched savannah was converted into farmland, the compositions of the two bird communities had both changed and became more similar. The broadly benign impact on birds of land conversion into subsistence farms is attributed to the relatively low level of agricultural activity in the farmland and the large regional pool of nonspecialist bird species.

3.
Ecol Evol ; 9(21): 12259-12271, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31832158

RESUMO

The conversion of natural, or seminatural, habitats to agricultural land and changes in agricultural land use are significant drivers of biodiversity loss. Within the context of land-sharing versus land-sparing debates, large-scale commercial agriculture is known to be detrimental to biodiversity, but the effects of small-scale subsistence farming on biodiversity are disputed. This poses a problem for sustainable land-use management in the Global South, where approximately 30% of farmland is small-scale. Following a rapid land redistribution program in Zimbabwe, we evaluated changes in avian biodiversity by examining richness, abundance, and functional diversity. Rapid land redistribution has, in the near term, resulted in increased avian abundance in newly farmed areas containing miombo woodland and open habitat. Conversion of seminatural ranched land to small-scale farms had a negative impact on larger-bodied birds, but species richness increased, and birds in some feeding guilds maintained or increased abundance. We found evidence that land-use change caused a shift in the functional traits of the communities present. However, functional analyses may not have adequately reflected the trait filtering effect of land redistribution on large species. Whether newly farmed landscapes in Zimbabwe can deliver multiple benefits in terms of food production and habitat for biodiversity in the longer term is an open question. When managing agricultural land transitions, relying on taxonomic measures of diversity, or abundance-weighted measures of function diversity, may obscure important information. If the value of smallholder-farmed land for birds is to be maintained or improved, it will be essential to ensure that a wide array of habitat types is retained alongside efforts to reduce hunting and persecution of large bird species.

4.
Infect Genet Evol ; 58: 253-257, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29331670

RESUMO

Bats carry a great diversity of zoonotic viruses with a high-impact on human health and livestock. Since the emergence of new coronaviruses and paramyxoviruses in humans (e.g. Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Nipah virus), numerous studies clearly established that bats can maintain some of these viruses. Improving our understanding on the role of bats in the epidemiology of the pathogens they harbour is necessary to prevent cross-species spill over along the wild/domestic/human gradient. In this study, we screened bat faecal samples for the presence of Coronavirus and Paramyxovirus in two caves frequently visited by local people to collect manure and/or to hunt bats in Zimbabwe. We amplified partial RNA-dependent RNA polymerase genes of Alpha and Betacoronavirus together with the partial polymerase gene of Paramyxovirus. Identified coronaviruses were related to pathogenic human strains and the paramyxovirus belonged to the recently described Jeilongvirus genus. Our results highlighted the importance of monitoring virus circulation in wildlife, especially bats, in the context of intense human-wildlife interfaces in order to strengthen prevention measures among local populations and to implement sentinel surveillance in sites with high zoonotic diseases transmission potential.


Assuntos
Alphacoronavirus/genética , Betacoronavirus/genética , Quirópteros/virologia , Infecções por Coronavirus/veterinária , Infecções por Paramyxoviridae/veterinária , Paramyxoviridae/genética , Alphacoronavirus/classificação , Animais , Betacoronavirus/classificação , Doenças Transmissíveis Emergentes/veterinária , Evolução Molecular , Variação Genética , Genoma Viral , Paramyxoviridae/classificação , Filogenia , Zimbábue
5.
Ecohealth ; 8(1): 4-13, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21516374

RESUMO

Avian influenza viruses (AIVs) are pathogens of global concern, but there has been little previous research on avian influenza in southern Africa and almost nothing is known about the dynamics of AIVs in the region. We counted, captured and sampled birds regularly at five sites, two in South Africa (Barberspan and Strandfontein) and one in each of Botswana (Lake Ngami), Mozambique (Lake Chuali) and Zimbabwe (Lakes Manyame and Chivero) between March 2007 and May 2009. The South African and Zimbabwean sites were visited every 2 months and the sites in Botswana and Mozambique every 4 months. During each visit we undertook 5-7 days of standardised bird counts followed by 5-10 days of capturing and sampling water-associated birds. We sampled 4,977 birds of 165 different species and completed 2,503 half-hour point counts. We found 125 positive rRT-PCR cases of avian influenza across all sites. Two viruses (H1N8 and H3N8) were isolated and additional H5, H6 and H7 strains were identified. We did not positively identify any highly pathogenic H5N1. Overall viral prevalence (2.51%) was similar to the lower range of European values, considerable spatial and temporal variation occurred in viral prevalence, and there was no detectable influence of the annual influx of Palearctic migrants. Although waterbirds appear to be the primary viral carriers, passerines may link wild birds and poultry. While influenza cycles are probably driven by the bird movements that result from rainfall patterns, the epidemiology of avian influenza in wild birds in the subregion is complex and there appears to be the possibility for viral transmission throughout the year.


Assuntos
Meio Ambiente , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/epidemiologia , África Austral/epidemiologia , Animais , Aves , Doenças Endêmicas , Influenza Aviária/virologia , Estudos de Amostragem
6.
Ecohealth ; 8(1): 109-15, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21125309

RESUMO

Waterfowl were counted and sampled in a Zimbabwean wetland over 24 months. LPAI strains were detected during 20 consecutive months, providing evidence of regional yearly persistence of LPAI. We discuss the role of Afro-tropical ducks in viral maintenance and transmission, and attempt to explain the observed patterns.


Assuntos
Ecossistema , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/epidemiologia , Animais , Animais Selvagens/microbiologia , Aves/virologia , Zimbábue/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...