Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 106(1-1): 014301, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35974603

RESUMO

This paper investigates adversarial attacks conducted to distort voter model dynamics in complex networks. Specifically, a simple adversarial attack method is proposed to hold the state of opinions of an individual closer to the target state in the voter model dynamics. This indicates that even when one opinion is the majority the vote outcome can be inverted (i.e., the outcome can lean toward the other opinion) by adding extremely small (hard-to-detect) perturbations strategically generated in social networks. Adversarial attacks are relatively more effective in complex (large and dense) networks. These results indicate that opinion dynamics can be unknowingly distorted.

2.
R Soc Open Sci ; 7(2): 191859, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32257343

RESUMO

The absence of genome complexity in prokaryotes, being the evolutionary precursors to eukaryotic cells comprising all complex life (the prokaryote-eukaryote divide), is a long-standing question in evolutionary biology. A previous study hypothesized that the divide exists because prokaryotic genome size is constrained by bioenergetics (prokaryotic power per gene or genome being significantly lower than eukaryotic ones). However, this hypothesis was evaluated using a relatively small dataset due to lack of data availability at the time, and is therefore controversial. Accordingly, we constructed a larger dataset of genomes, metabolic rates, cell sizes and ploidy levels to investigate whether an energetic barrier to genome complexity exists between eukaryotes and prokaryotes while statistically controlling for the confounding effects of cell size and phylogenetic signals. Notably, we showed that the differences in bioenergetics between prokaryotes and eukaryotes were less significant than those previously reported. More importantly, we found a limited contribution of power per genome and power per gene to the prokaryote-eukaryote dichotomy. Our findings indicate that the prokaryote-eukaryote divide is hard to explain from the energetic perspective. However, our findings may not entirely discount the traditional hypothesis; in contrast, they indicate the need for more careful examination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...