Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(14): 3445-3451, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37010937

RESUMO

In this work, we apply polarized Raman spectroscopy for study of internal vibrations of the 3-cyanopyridinium cation in the halide post-perovskite (3cp)PbBr3 (3cp = 3-CN-C5H5NH+). For a single cation, the vibrational frequencies and intensities of the Raman signal were calculated using the density functional theory. Selection rules were established for vibrations of cations in the crystal. These rules together with modeling results were used to identify the internal vibrations of the cation in the Raman spectrum of the crystal. Narrow and isolated internal vibrations of cations could be used as spectators of the crystalline environment.

2.
Langmuir ; 36(8): 1930-1936, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32036668

RESUMO

Density functional theory (DFT) study of ozone adsorption on dehydrated nanocrystalline TiO2 is presented. Singlet and triplet binding modes of ozone to the oxide's titanium cations are considered. In both the modes, monodentate and bidentate ozone complexes are formed. According to DFT, the triplet monodentates are the most stable species. The formation of monodentate ozone adsorption complexes is in-line with an earlier interpretation of infrared (IR) spectroscopic data on ozone adsorption on an anatase surface. However, the computed difference in the fundamental vibrational frequencies (ν1 - ν3) of ozone in the triplet monodentates is significantly larger than the corresponding IR value. This discrepancy is resolved by demonstrating that the triplet monodentates readily decompose, realizing molecular oxygen that is consistent with published experimental data. The predicted energy barrier of the dissociative adsorption is less than 2 kcal/mol. In contrast, the computed difference in the fundamental vibrational frequencies (ν1 - ν3) of adsorbed ozone in the singlet bidentates perfectly agrees with the experiment.

3.
J Mol Model ; 19(11): 5063-73, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24085538

RESUMO

In the present paper, we examine the general applicability of different TiO2 model clusters to study of local chemical events on TiO2 sub-nanoparticles. Our previous DFT study of TiO2 activation through H adsorption and following deactivation by O2 adsorption using small amorphous Ti8O16 cluster were complemented by examination of rutile-type and spherical Ti15O30 nanoclusters. The obtained results were thoroughly compared with experimental data and results of related computational studies using other TiO2 models including periodic structures. It turned out that all considered model TiO2 model systems provide qualitatively similar results. It was shown that atomic hydrogen is adsorbed with negligible activation energy on surface O atoms, which is accompanied by the appearance of reduced Ti(3+) species and corresponding localized band gap 3d-Ti states. Oxygen molecule is adsorbed on Ti(3+) sites spontaneously forming molecular O2 (-) species by capturing an extra electron of Ti(3+) ion, which results in disappearance of Ti(3+) species and corresponding band gap states. Calculated g-tensor values of Ti(3+) and O2 (-) species agree well with the results of EPR studies and do not depend on the used TiO2 model cluster. Additionally, it was shown that the various cluster calculations provide results comparable with the calculations of periodic structures with respect to the modeling of chemical processes under study. As a whole, the present study approves the validity of molecular cluster approach to study of local chemical events on TiO2 sub-nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...