Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Eng Commun ; 17: e00225, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37435441

RESUMO

The goal of this study is to develop a general strategy for bacterial engineering using an integrated synthetic biology and machine learning (ML) approach. This strategy was developed in the context of increasing L-threonine production in Escherichia coli ATCC 21277. A set of 16 genes was initially selected based on metabolic pathway relevance to threonine biosynthesis and used for combinatorial cloning to construct a set of 385 strains to generate training data (i.e., a range of L-threonine titers linked to each of the specific gene combinations). Hybrid (regression/classification) deep learning (DL) models were developed and used to predict additional gene combinations in subsequent rounds of combinatorial cloning for increased L-threonine production based on the training data. As a result, E. coli strains built after just three rounds of iterative combinatorial cloning and model prediction generated higher L-threonine titers (from 2.7 g/L to 8.4 g/L) than those of patented L-threonine strains being used as controls (4-5 g/L). Interesting combinations of genes in L-threonine production included deletions of the tdh, metL, dapA, and dhaM genes as well as overexpression of the pntAB, ppc, and aspC genes. Mechanistic analysis of the metabolic system constraints for the best performing constructs offers ways to improve the models by adjusting weights for specific gene combinations. Graph theory analysis of pairwise gene modifications and corresponding levels of L-threonine production also suggests additional rules that can be incorporated into future ML models.

2.
Genome Res ; 32(3): 558-568, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34987055

RESUMO

Patterns of sequencing coverage along a bacterial genome-summarized by a peak-to-trough ratio (PTR)-have been shown to accurately reflect microbial growth rates, revealing a new facet of microbial dynamics and host-microbe interactions. Here, we introduce Compute PTR (CoPTR): a tool for computing PTRs from complete reference genomes and assemblies. Using simulations and data from growth experiments in simple and complex communities, we show that CoPTR is more accurate than the current state of the art while also providing more PTR estimates overall. We further develop a theory formalizing a biological interpretation for PTRs. Using a reference database of 2935 species, we applied CoPTR to a case-control study of 1304 metagenomic samples from 106 individuals with inflammatory bowel disease. We show that growth rates are personalized, are only loosely correlated with relative abundances, and are associated with disease status. We conclude by showing how PTRs can be combined with relative abundances and metabolomics to investigate their effect on the microbiome.


Assuntos
Metagenômica , Microbiota , Estudos de Casos e Controles , Genoma Bacteriano , Humanos , Metagenoma , Microbiota/genética
3.
Bioinform Adv ; 2(1): vbac043, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699411

RESUMO

Summary: MiSDEED (Microbial Synthetic Data Engine for Experimental Design) is a command-line tool for generating synthetic longitudinal multinode data from simulated microbial environments. It generates relative-abundance timecourses under perturbations for an arbitrary number of time points, samples, locations and data types. All simulation parameters are exposed to the user to facilitate rapid power analysis and aid in study design. Users who want additional flexibility may also use MiSDEED as a Python package. Availability and implementation: MiSDEED is written in Python and is freely available at https://github.com/pchlenski/misdeed.

4.
PLoS One ; 16(4): e0250092, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33857229

RESUMO

Large amounts of metagenomically-derived data are submitted to PATRIC for analysis. In the future, we expect even more jobs submitted to PATRIC will use metagenomic data. One in-demand use case is the extraction of near-complete draft genomes from assembled contigs of metagenomic origin. The PATRIC metagenome binning service utilizes the PATRIC database to furnish a large, diverse set of reference genomes. We provide a new service for supervised extraction and annotation of high-quality, near-complete genomes from metagenomically-derived contigs. Reference genomes are assigned to putative draft genome bins based on the presence of single-copy universal marker roles in the sample, and contigs are sorted into these bins by their similarity to reference genomes in PATRIC. Each set of binned contigs represents a draft genome that will be annotated by RASTtk in PATRIC. A structured-language binning report is provided containing quality measurements and taxonomic information about the contig bins. The PATRIC metagenome binning service emphasizes extraction of high-quality genomes for downstream analysis using other PATRIC tools and services. Due to its supervised nature, the binning service is not appropriate for mining novel or extremely low-coverage genomes from metagenomic samples.


Assuntos
Metagenoma , Metagenômica/métodos , Análise por Conglomerados , Humanos , Análise de Sequência de DNA/métodos
5.
Nucleic Acids Res ; 48(D1): D606-D612, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31667520

RESUMO

The PathoSystems Resource Integration Center (PATRIC) is the bacterial Bioinformatics Resource Center funded by the National Institute of Allergy and Infectious Diseases (https://www.patricbrc.org). PATRIC supports bioinformatic analyses of all bacteria with a special emphasis on pathogens, offering a rich comparative analysis environment that provides users with access to over 250 000 uniformly annotated and publicly available genomes with curated metadata. PATRIC offers web-based visualization and comparative analysis tools, a private workspace in which users can analyze their own data in the context of the public collections, services that streamline complex bioinformatic workflows and command-line tools for bulk data analysis. Over the past several years, as genomic and other omics-related experiments have become more cost-effective and widespread, we have observed considerable growth in the usage of and demand for easy-to-use, publicly available bioinformatic tools and services. Here we report the recent updates to the PATRIC resource, including new web-based comparative analysis tools, eight new services and the release of a command-line interface to access, query and analyze data.


Assuntos
Bactérias/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Algoritmos , Animais , Caenorhabditis elegans/genética , Galinhas/genética , Drosophila melanogaster/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Internet , Macaca mulatta/genética , Metagenômica , Camundongos , National Institute of Allergy and Infectious Diseases (U.S.) , Fenótipo , Filogenia , Ratos , Suínos/genética , Estados Unidos , Peixe-Zebra/genética
6.
BMC Bioinformatics ; 20(1): 486, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31581946

RESUMO

BACKGROUND: Recent advances in high-volume sequencing technology and mining of genomes from metagenomic samples call for rapid and reliable genome quality evaluation. The current release of the PATRIC database contains over 220,000 genomes, and current metagenomic technology supports assemblies of many draft-quality genomes from a single sample, most of which will be novel. DESCRIPTION: We have added two quality assessment tools to the PATRIC annotation pipeline. EvalCon uses supervised machine learning to calculate an annotation consistency score. EvalG implements a variant of the CheckM algorithm to estimate contamination and completeness of an annotated genome.We report on the performance of these tools and the potential utility of the consistency score. Additionally, we provide contamination, completeness, and consistency measures for all genomes in PATRIC and in a recent set of metagenomic assemblies. CONCLUSION: EvalG and EvalCon facilitate the rapid quality control and exploration of PATRIC-annotated draft genomes.


Assuntos
Bases de Dados Genéticas , Genoma Arqueal , Genoma Bacteriano , Aprendizado de Máquina , Metagenômica/métodos , Metagenômica/normas , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...