Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37896182

RESUMO

Human glioblastoma multiforme (GBM) is a primary malignant brain tumor, a radically incurable disease characterized by rapid growth resistance to classical therapies, with a median patient survival of about 15 months. For decades, a plethora of approaches have been developed to make GBM therapy more precise and improve the diagnosis of this pathology. Targeted delivery mediated by the use of various molecules (monoclonal antibodies, ligands to overexpressed tumor receptors) is one of the promising methods to achieve this goal. Here we present a novel genetically encoded nanoscale dual-labeled system based on Quasibacillus thermotolerans (Qt) encapsulins exploiting biologically inspired designs with iron-containing nanoparticles as a cargo, conjugated with human fluorescent labeled transferrin (Tf) acting as a vector. It is known that the expression of transferrin receptors (TfR) in glioma cells is significantly higher compared to non-tumor cells, which enables the targeting of the resulting nanocarrier. The selectivity of binding of the obtained nanosystem to glioma cells was studied by qualitative and quantitative assessment of the accumulation of intracellular iron, as well as by magnetic particle quantification method and laser scanning confocal microscopy. Used approaches unambiguously demonstrated that transferrin-conjugated encapsulins were captured by glioma cells much more efficiently than by benign cells. The resulting bioinspired nanoplatform can be supplemented with a chemotherapeutic drug or genotherapeutic agent and used for targeted delivery of a therapeutic agent to malignant glioma cells. Additionally, the observed cell-assisted biosynthesis of magnetic nanoparticles could be an attractive way to achieve a narrow size distribution of particles for various applications.

2.
J Funct Biomater ; 14(9)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37754875

RESUMO

Magnetic nanoparticles based on iron oxide attract researchers' attention due to a wide range of possible applications in biomedicine. As synthesized, most of the magnetic nanoparticles do not form the stable colloidal solutions that are required for the evaluation of their interactions with cells or their efficacy on animal models. For further application in biomedicine, magnetic nanoparticles must be further modified with biocompatible coating. Both the size and shape of magnetic nanoparticles and the chemical composition of the coating have an effect on magnetic nanoparticles' interactions with living objects. Thus, a universal method for magnetic nanoparticles' stabilization in water solutions is needed, regardless of how magnetic nanoparticles were initially synthesized. In this paper, we propose the versatile and highly reproducible ligand exchange technique of coating with 3,4-dihydroxiphenylacetic acid (DOPAC), based on the formation of Fe-O bonds with hydroxyl groups of DOPAC leading to the hydrophilization of the magnetic nanoparticles' surfaces following phase transfer from organic solutions to water. The proposed technique allows for obtaining stable water-colloidal solutions of magnetic nanoparticles with sizes from 21 to 307 nm synthesized by thermal decomposition or coprecipitation techniques. Those stabilized by DOPAC nanoparticles were shown to be efficient in the magnetomechanical actuation of DNA duplexes, drug delivery of doxorubicin to cancer cells, and targeted delivery by conjugation with antibodies. Moreover, the diversity of possible biomedical applications of the resulting nanoparticles was presented. This finding is important in terms of nanoparticle design for various biomedical applications and will reduce nanomedicines manufacturing time, along with difficulties related to comparative studies of magnetic nanoparticles with different magnetic core characteristics.

3.
Biosensors (Basel) ; 13(7)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37504132

RESUMO

New styryl dyes consisting of N-methylpyridine or N-methylquinoline scaffolds were synthesized, and their binding affinities for DNA in cell-free solution were studied. The replacement of heterocyclic residue from the pyridine to quinoline group as well as variation in the phenyl part strongly influenced their binding modes, binding affinities, and spectroscopic responses. Biological experiments showed the low toxicity of the obtained dyes and their applicability as selective dyes for mitochondria in living cells.


Assuntos
DNA , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , DNA/química , Mitocôndrias/metabolismo , Microscopia de Fluorescência , Células HeLa
4.
Biochemistry (Mosc) ; 88(1): 35-49, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37068871

RESUMO

In 1994 a new class of prokaryotic compartments was discovered, collectively called "encapsulins" or "nanocompartments". Encapsulin shell protomer proteins self-assemble to form icosahedral structures of various diameters (24-42 nm). Inside of nanocompartments shells, one or several cargo proteins, diverse in their functions, can be encapsulated. In addition, non-native cargo proteins can be loaded into nanocompartments, and shell surfaces can be modified via various compounds, which makes it possible to create targeted drug delivery systems, labels for optical and MRI imaging, and to use encapsulins as bioreactors. This review describes a number of strategies of encapsulins application in various fields of science, including biomedicine and nanobiotechnologies.


Assuntos
Proteínas de Bactérias , Biotecnologia , Proteínas de Bactérias/metabolismo , Células Procarióticas/metabolismo , Subunidades Proteicas , Sistemas de Liberação de Medicamentos
5.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555233

RESUMO

Introducing a new genetically encoded material containing a photoactivatable label as a model cargo protein, based on Myxococcus xanthus (Mx) encapsulin system stably expressed in human 293T cells. Encapsulin from Mx is known to be a protein-based container for a ferritin-like cargo in its shell which could be replaced with an exogenous cargo protein, resulting in a modified encapsulin system. We replaced Mx natural cargo with a foreign photoactivatable mCherry (PAmCherry) fluorescent protein and isolated encapsulins, containing PAmCherry, from 293T cells. Isolated Mx encapsulin shells containing photoactivatable label can be internalized by macrophages, wherein the PAmCherry fluorescent signal remains clearly visible. We believe that a genetically encoded nanocarrier system obtained in this study, can be used as a platform for controllable delivery of protein/peptide therapeutics in vitro.


Assuntos
Proteínas de Bactérias , Myxococcus xanthus , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo
6.
Photodiagnosis Photodyn Ther ; 40: 103202, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36400167

RESUMO

Efficient screening of photosensitizers (PS) as well as studying their photodynamic activity, especially PS excited in the near-infrared region, require informative in vitro models to adequately reflect the architecture, thickness, and intercellular interactions in tumors. In our study, we used spheroids formed from human colon cancer HCT-116 cells and liver cancer Huh7 cells to assess the phototoxicity of a new PS based on tetracationic derivative of synthetic bacteriochlorin (BC4). We optimized conditions for the irradiation regime based on the kinetics of BC4 accumulation in spheroids and kinetics of spheroid growth. Although PS accumulated more efficiently in HCT-116 cells, characterized by more aggressive growth and high proliferative potential, they were less susceptible to the photodynamic therapy (PDT) compared to the slower growing Huh7 cells. We also showed that 3D models of spheroids were less sensitive to BC4 than conventional 2D cultures with relatively identical kinetics of drug accumulation. Our findings suggest that BC4 is a perspective agent for photodynamic therapy against cancer cells.


Assuntos
Neoplasias do Colo , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Neoplasias do Colo/tratamento farmacológico , Células HCT116 , Linhagem Celular Tumoral , Fígado
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 279: 121446, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35667137

RESUMO

Two bis(styryl) dyes, varying in type of spacer between two mono(styryl) units, were tested for interactions with ct-DNA or cl-RNA. Both compounds showed strong affinity toward ds-DNA/ss-RNA, the binding mode of the interaction is shifting between DNA groove binding to RNA intercalation. Consequently, interaction with DNA shows a stronger flare-up of fluorescence (151 times for dye 1 and 118 times for dye 2) than when binding with RNA (23 times and 36 times correspondingly). The presence of energy transfer in the bis(styryl) system increases the Stokes shift of the dye, so when irradiating the system in the region of 370-380 nm, fluorescence is detected at 610-620 nm. The biological experiments showed that the efficient intracellular fluorescence quench was observed in the DNase digest test suggested that dyes can be applied by recognition of DNA in the presence of RNA molecules.


Assuntos
Corantes Fluorescentes , RNA , DNA/química , Fluorescência , Corantes Fluorescentes/química
8.
Nanomaterials (Basel) ; 12(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35630878

RESUMO

According to the World Health Organization, breast cancer is the most common oncological disease worldwide. There are multiple animal models for different types of breast carcinoma, allowing the research of tumor growth, metastasis, and angiogenesis. When studying these processes, it is crucial to visualize cancer cells for a prolonged time via a non-invasive method, for example, magnetic resonance imaging (MRI). In this study, we establish a new genetically encoded material based on Quasibacillus thermotolerans (Q.thermotolerans, Qt) encapsulin, stably expressed in mouse 4T1 breast carcinoma cells. The label consists of a protein shell containing an enzyme called ferroxidase. When adding Fe2+, a ferroxidase oxidizes Fe2+ to Fe3+, followed by iron oxide nanoparticles formation. Additionally, genes encoding mZip14 metal transporter, enhancing the iron transport, were inserted into the cells via lentiviral transduction. The expression of transgenic sequences does not affect cell viability, and the presence of magnetic nanoparticles formed inside encapsulins results in an increase in T2 relaxivity.

9.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830156

RESUMO

Over the past decade, cell therapy has found many applications in the treatment of different diseases. Some of the cells already used in clinical practice include stem cells and CAR-T cells. Compared with traditional drugs, living cells are much more complicated systems that must be strictly controlled to avoid undesirable migration, differentiation, or proliferation. One of the approaches used to prevent such side effects involves monitoring cell distribution in the human body by any noninvasive technique, such as magnetic resonance imaging (MRI). Long-term tracking of stem cells with artificial magnetic labels, such as magnetic nanoparticles, is quite problematic because such labels can affect the metabolic process and cell viability. Additionally, the concentration of exogenous labels will decrease during cell division, leading to a corresponding decrease in signal intensity. In the current work, we present a new type of genetically encoded label based on encapsulin from Myxococcus xanthus bacteria, stably expressed in human mesenchymal stem cells (MSCs) and coexpressed with ferroxidase as a cargo protein for nanoparticles' synthesis inside encapsulin shells. mZip14 protein was expressed for the enhancement of iron transport into the cell. Together, these three proteins led to the synthesis of iron-containing nanoparticles in mesenchymal stem cells-without affecting cell viability-and increased contrast properties of MSCs in MRI.


Assuntos
Proteínas de Bactérias/metabolismo , Ferro/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Células-Tronco Mesenquimais/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Humanos , Nanopartículas de Magnetita/ultraestrutura , Células-Tronco Mesenquimais/citologia , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo
10.
Bioorg Chem ; 115: 105267, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34426158

RESUMO

A new anticancer benzo[d]thiazolo[3,2-a]quinolin-10-ium derivatives were synthesized and characterized. Anticancer evaluation in vitro against four cancer cell lines including adenocarcinomic human alveolar basal epithelial cells (A549), hepatocellular carcinoma (HepG2), prostate cancer (PC3) and breast cancer (MCF7) indicated that some of prepared compounds shows higher selectivity in comparison with doxorubicin. DNA interaction studies by optical, CD, NMR spectroscopies showed the high affinity of benzothiazole ligands towards the dsDNA. The ligand-DNA interaction occurs through the intercalation of benzo[d]thiazolo[3,2-a]quinolin-10-ium derivatives with nucleic acid. The investigation of formed ligand - DNA complexes by docking and molecular dynamic calculations was applied for analysis of the relationship between structure and anticancer activity. The results suggested that benzo[d]thiazolo[3,2-a]quinolin-10-ium derivatives might serve as a novel scaffold for the future development to new antitumor agents.


Assuntos
Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , DNA/química , Compostos de Quinolínio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzotiazóis/síntese química , Benzotiazóis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Processos Fotoquímicos , Compostos de Quinolínio/síntese química , Compostos de Quinolínio/química , Relação Estrutura-Atividade
11.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807662

RESUMO

A regio- and diastereoselective synthesis of two types of dispiro derivatives of 2-selenoxoimidazolidin-4-ones, differing in the position of the nitrogen atom in the central pyrrolidine ring of the spiro-fused system-namely, 2-selenoxodispiro[imidazolidine-4,3'-pyrrolidine-2',3″-indoline]-2″,5-diones (5a-h) and 2-senenoxodispiro[imidazolidine-4,3'-pyrrolidine-4',3″-indoline]-2″,5-diones (6a-m)-were developed based on a 1,3-dipolar cycloaddition of azomethine ylides generated from isatin and sarcosine or formaldehyde and sarcosine to 5-arylidene or 5-indolidene-2-selenoxo-tetrahydro-4H-imidazole-4-ones. Selenium-containing dispiro indolinones generally exhibit cytotoxic activity near to the activity of the corresponding oxygen and sulfur-containing derivatives. Compounds 5b, 5c, and 5e demonstrated considerable in vitro cytotoxicity in the 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide (MTT) test (concentration of compounds that caused 50% death of cells (CC50) 7.6-8.7 µM) against the A549 cancer cell line with the VA13/A549 selectivity index 5.2-6.9; some compounds (5 and 6) increased the level of intracellular reactive oxygen species (ROS) in the experiment on A549 and PC3 cells using platinized carbon nanoelectrode. The tests for p53 activation for compounds 5 and 6 on the transcriptional reporter suggest that the investigated compounds can only have an indirect p53-dependent mechanism of action. For the compounds 5b, 6b, and 6l, the ROS generation may be one of the significant mechanisms of their cytotoxic action.


Assuntos
Citotoxinas , Neoplasias/tratamento farmacológico , Pirrolidinas , Espécies Reativas de Oxigênio/metabolismo , Células A549 , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Células PC-3 , Pirrolidinas/síntese química , Pirrolidinas/química , Pirrolidinas/farmacologia , Proteína Supressora de Tumor p53/metabolismo
12.
Biomolecules ; 10(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604934

RESUMO

Recently, a new class of prokaryotic compartments, collectively called encapsulins or protein nanocompartments, has been discovered. The shell proteins of these structures self-organize to form icosahedral compartments with a diameter of 25-42 nm, while one or more cargo proteins with various functions can be encapsulated in the nanocompartment. Non-native cargo proteins can be loaded into nanocompartments and the surface of the shells can be further functionalized, which allows for developing targeted drug delivery systems or using encapsulins as contrast agents for magnetic resonance imaging. Since the genes encoding encapsulins can be integrated into the cell genome, encapsulins are attractive for investigation in various scientific fields, including biomedicine and nanotechnology.


Assuntos
Proteínas de Bactérias/química , Nanocompostos/química , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...