Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 13(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38535599

RESUMO

The glycosylation of viral envelope proteins plays an important role in virus biology and the immune response of the host to infection. Hepatitis C virus (HCV) envelope proteins E1 and E2, key players in virus entry and spread, are highly N-glycosylated and possess 4 (5 in certain genotypes) to 11 conserved glycosylation sites, respectively. Many published results based on recombinant proteins indicate that the glycan shield can mask the epitopes targeted by neutralizing antibodies. Glycan shifting within the conserved linear E2 region (412-423) could be one of the escape strategies used by HCV. In the present report, we isolated E2 genes from samples (collected before the IFN-RBV therapy) originating from pediatric patients infected with HCV gt 1a. We analyzed the biochemical properties of cloned E2 glycoprotein variants and investigated their glycosylation status. The sequencing of E2 genes isolated from patients who did not respond to therapy revealed mutations at N-glycosylation sites, thus leading to a lower molecular weight and a low affinity to both linear and conformational neutralizing antibodies. The loss of the glycosylation site within the conserved epitope (amino acid 417) impaired the binding with AP33, an antibody that potently neutralizes all genotypes of HCV. Our findings, based on clinical samples, confirm the influence of N-glycosylation aberrations on the antigenic and conformational properties of HCV E1/E2, which may possibly correlate with the outcome of therapy in patients.

2.
J Virol ; 96(1): e0113021, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34613785

RESUMO

Tick-borne encephalitis virus (TBEV), of the genus Flavivirus, is a causative agent of severe encephalitis in regions of endemicity of northern Asia and central and northern Europe. Interferon-induced transmembrane proteins (IFITMs) are restriction factors that inhibit the replication cycles of numerous viruses, including flaviviruses such as West Nile virus, dengue virus, and Zika virus. Here, we demonstrate the role of IFITM1, IFITM2, and IFITM3 in the inhibition of TBEV infection and in protection against virus-induced cell death. We show that the most significant role is that of IFITM3, including the dissection of its functional motifs by mutagenesis. Furthermore, through the use of CRISPR-Cas9-generated IFITM1/3-knockout monoclonal cell lines, we confirm the role and additive action of endogenous IFITMs in TBEV suppression. However, the results of coculture assays suggest that TBEV might partially escape interferon- and IFITM-mediated suppression during high-density coculture infection when the virus enters naive cells directly from infected donor cells. Thus, cell-to-cell spread may constitute a strategy for virus escape from innate host defenses. IMPORTANCE TBEV infection may result in encephalitis, chronic illness, or death. TBEV is endemic in northern Asia and Europe; however, due to climate change, new centers of endemicity have arisen. Although effective TBEV vaccines have been approved, vaccination coverage is low, and due to the lack of specific therapeutics, infected individuals depend on their immune responses to control the infection. IFITM proteins are components of the innate antiviral defenses that suppress cell entry of many viral pathogens. However, no studies on the role of IFITM proteins in TBEV infection have been published thus far. Understanding antiviral innate immune responses is crucial for the future development of antiviral strategies. Here, we show the important role of IFITM proteins in the inhibition of TBEV infection and virus-mediated cell death. However, our data suggest that TBEV cell-to-cell spread may be less prone to both interferon- and IFITM-mediated suppression, potentially facilitating escape from IFITM-mediated immunity.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/metabolismo , Encefalite Transmitida por Carrapatos/virologia , Interações Hospedeiro-Patógeno , Interferons/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Efeito Citopatogênico Viral , Resistência à Doença/genética , Resistência à Doença/imunologia , Suscetibilidade a Doenças , Encefalite Transmitida por Carrapatos/genética , Encefalite Transmitida por Carrapatos/imunologia , Expressão Gênica , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Família Multigênica , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Replicação Viral
3.
Postepy Hig Med Dosw (Online) ; 69: 946-63, 2015 Aug 19.
Artigo em Polonês | MEDLINE | ID: mdl-26400881

RESUMO

Despite available treatment, Hepatitis C remains one of most serious burdens to public health. Current therapy based on pegylated interferon-alpha and ribavirin has significant side effects and its effectiveness varies for different genotypes of the virus. Four novel drugs - viral protease inhibitors (telaprevir, boceprevir, simeprevir) and polymerase inhibitor - sofosbuvir have been introduced in last years for use in combination with standard-of-care treatment. For the first time interferon free therapies were approved with the use of combination of sofosbuvir+ribavirin. New therapies improve virological response rates but also increase the cost, side effects and raise the issue of drug resistance. Numerous novel anti-HCV compounds have been evaluated in advanced clinical trials including inhibitors of viral proteins (protease, polymerase and NS5A) and inhibitors of host factors involved in HCV replication (cyclophilin A, microRNA - miR-122). New interferon-free therapies reducing severe side effects are expected to enter the market within few months. At the same time efforts are undertaken to determine the host and viral factors with predictive value for HCV treatment response, enabling personalized therapy approach. The main success in this field was the discovery of interleukin IL28B polymorphism, which correlates with positive standard-of-care treatment response. An effective vaccination may be an alternative for antiviral drugs, but no anti-HCV vaccine is available currently. It is well proved that successful vaccination should induce antibody and T-cell responses specific against a range of HCV genotypes. With this aim, new subunit and genetic candidate vaccines have been evaluated in I and II phase clinical trials. This review summarizes the recent developments in the field of new drug development and vaccine studies against hepatitis C virus.


Assuntos
Antivirais/uso terapêutico , Hepatite C/diagnóstico , Hepatite C/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Inibidores de Proteases/uso terapêutico , Ribavirina/uso terapêutico , Simeprevir/uso terapêutico , Hepacivirus/efeitos dos fármacos , Hepatite C/prevenção & controle , Humanos
4.
J Virol ; 88(10): 5502-10, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24599994

RESUMO

UNLABELLED: Despite the recent progress in the development of new antiviral agents, hepatitis C virus (HCV) infection remains a major global health problem, and there is a need for a preventive vaccine. We previously reported that adenoviral vectors expressing HCV nonstructural proteins elicit protective T cell responses in chimpanzees and were immunogenic in healthy volunteers. Furthermore, recombinant HCV E1E2 protein formulated with adjuvant MF59 induced protective antibody responses in chimpanzees and was immunogenic in humans. To develop an HCV vaccine capable of inducing both T cell and antibody responses, we constructed adenoviral vectors expressing full-length and truncated E1E2 envelope glycoproteins from HCV genotype 1b. Heterologous prime-boost immunization regimens with adenovirus and recombinant E1E2 glycoprotein (genotype 1a) plus MF59 were evaluated in mice and guinea pigs. Adenovirus prime and protein boost induced broad HCV-specific CD8+ and CD4+ T cell responses and functional Th1-type IgG responses. Immune sera neutralized luciferase reporter pseudoparticles expressing HCV envelope glycoproteins (HCVpp) and a diverse panel of recombinant cell culture-derived HCV (HCVcc) strains and limited cell-to-cell HCV transmission. This study demonstrated that combining adenovirus vector with protein antigen can induce strong antibody and T cell responses that surpass immune responses achieved by either vaccine alone. IMPORTANCE: HCV infection is a major health problem. Despite the availability of new directly acting antiviral agents for treating chronic infection, an affordable preventive vaccine provides the best long-term goal for controlling the global epidemic. This report describes a new anti-HCV vaccine targeting the envelope viral proteins based on adenovirus vector and protein in adjuvant. Rodents primed with the adenovirus vaccine and boosted with the adjuvanted protein developed cross-neutralizing antibodies and potent T cell responses that surpassed immune responses achieved with either vaccine component alone. If combined with the adenovirus vaccine targeting the HCV NS antigens now under clinical testing, this new vaccine might lead to a stronger and broader immune response and to a more effective vaccine to prevent HCV infection. Importantly, the described approach represents a valuable strategy for other infectious diseases in which both T and B cell responses are essential for protection.


Assuntos
Anticorpos Neutralizantes/sangue , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/sangue , Linfócitos T/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Adenoviridae/genética , Adjuvantes Imunológicos/administração & dosagem , Animais , Feminino , Vetores Genéticos , Cobaias , Hepacivirus/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Polissorbatos/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Esqualeno/administração & dosagem , Vacinação/métodos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...