Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 75(3): 850-867, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37837419

RESUMO

Canopy architecture in cereals plays an important role in determining yield. Leaf width represents one key aspect of this canopy architecture. However, our understanding of leaf width control in cereals remains incomplete. Classical mutagenesis studies in barely identified multiple morphological mutants, including those with differing leaf widths. Of these, we characterized the broad leaf13 (blf13) mutant in detail. Mutant plants form wider leaves due to increased post-initiation growth and cell proliferation. The mutant phenotype perfectly co-segregated with a missense mutation in the HvHNT1 gene which affected a highly conserved region of the encoded protein, orthologous to the rice NARROW LEAF1 (NAL1) protein. Causality of this mutation for the blf13 phenotype is further supported by correlative transcriptomic analyses and protein-protein interaction studies showing that the mutant HvNHT1 protein interacts more strongly with a known interactor than wild-type HvHNT1. The mutant HvHNT1 protein also showed stronger homodimerization compared with wild-type HvHNT1, and homology modelling suggested an additional interaction site between HvHNT1 monomers due to the blf13 mutation. Thus, the blf13 mutation parallels known gain-of-function NAL1 alleles in rice that increase leaf width and grain yield, suggesting that the blf13 mutation may have a similar agronomic potential in barley.


Assuntos
Hordeum , Oryza , Hordeum/metabolismo , Mutação com Ganho de Função , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fenótipo , Mutação , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948205

RESUMO

Root hairs play a crucial role in anchoring plants in soil, interaction with microorganisms and nutrient uptake from the rhizosphere. In contrast to Arabidopsis, there is a limited knowledge of root hair morphogenesis in monocots, including barley (Hordeum vulgare L.). We have isolated barley mutant rhp1.e with an abnormal root hair phenotype after chemical mutagenesis of spring cultivar 'Sebastian'. The development of root hairs was initiated in the mutant but inhibited at the very early stage of tip growth. The length of root hairs reached only 3% of the length of parent cultivar. Using a whole exome sequencing (WES) approach, we identified G1674A mutation in the HORVU1Hr1G077230 gene, located on chromosome 1HL and encoding a cellulose synthase-like C1 protein (HvCSLC1) that might be involved in the xyloglucan (XyG) synthesis in root hairs. The identified mutation led to the retention of the second intron and premature termination of the HvCSLC1 protein. The mutation co-segregated with the abnormal root hair phenotype in the F2 progeny of rhp1.e mutant and its wild-type parent. Additionally, different substitutions in HORVU1Hr1G077230 were found in four other allelic mutants with the same root hair phenotype. Here, we discuss the putative role of HvCSLC1 protein in root hair tube elongation in barley.


Assuntos
Hordeum/genética , Raízes de Plantas/genética , Alelos , Regulação da Expressão Gênica de Plantas/genética , Mutação/genética , Fenótipo , Proteínas de Plantas/genética , Rizosfera , Sequenciamento do Exoma/métodos
3.
BMC Plant Biol ; 21(1): 22, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413097

RESUMO

BACKGROUND: Microspore embryogenesis is potentially the most effective method of obtaining doubled haploids (DH) which are utilized in breeding programs to accelerate production of new cultivars. However, the regeneration of albino plants significantly limits the exploitation of androgenesis for DH production in cereals. Despite many efforts, the precise mechanisms leading to development of albino regenerants have not yet been elucidated. The objective of this study was to reveal the genotype-dependent molecular differences in chloroplast differentiation that lead to the formation of green and albino regenerants in microspore culture of barley. RESULTS: We performed a detailed analysis of plastid differentiation at successive stages of androgenesis in two barley cultivars, 'Jersey' and 'Mercada' that differed in their ability to produce green regenerants. We demonstrated the lack of transition from the NEP-dependent to PEP-dependent transcription in plastids of cv. 'Mercada' that produced mostly albino regenerants in microspore culture. The failed NEP-to-PEP transition was associated with the lack of activity of Sig2 gene encoding a sigma factor necessary for transcription of plastid rRNA genes. A very low level of 16S and 23S rRNA transcripts and impaired plastid translation machinery resulted in the inhibition of photomorphogenesis in regenerating embryos and albino regenerants. Furthermore, the plastids present in differentiating 'Mercada' embryos contained a low number of plastome copies whose replication was not always completed. Contrary to 'Mercada', cv. 'Jersey' that produced 90% green regenerants, showed the high activity of PEP polymerase, the highly increased expression of Sig2, plastid rRNAs and tRNAGlu, which indicated the NEP inhibition. The increased expression of GLKs genes encoding transcription factors required for induction of photomorphogenesis was also observed in 'Jersey' regenerants. CONCLUSIONS: Proplastids present in microspore-derived embryos of albino-producing genotypes did not pass the early checkpoints of their development that are required for induction of further light-dependent differentiation of chloroplasts. The failed activation of plastid-encoded RNA polymerase during differentiation of embryos was associated with the genotype-dependent inability to regenerate green plants in barley microspore culture. The better understanding of molecular mechanisms underlying formation of albino regenerants may be helpful in overcoming the problem of albinism in cereal androgenesis.


Assuntos
Diferenciação Celular/genética , Cloroplastos/genética , Cor , Hordeum/crescimento & desenvolvimento , Hordeum/genética , Biogênese de Organelas , Pólen/crescimento & desenvolvimento , Pólen/genética , Técnicas de Cultura de Células , Cloroplastos/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Variação Genética , Genótipo
4.
Plant Sci ; 291: 110321, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31928659

RESUMO

Developing plants from in vitro culture of microspores or immature pollen grains (androgenesis) is a highly genotype-dependent process whose effectiveness in cereals is significantly reduced by occurrence of albino regenerants. Here, we examined a hypothesis that the molecular differentiation of plastids in barley microspores prior to in vitro culture affects the genotype ability to regenerate green plants in culture. At the mid-to-late uninucleate (ML) stage, routinely used to initiate microspore culture, the expression of most genes involved in plastid transcription, translation and starch synthesis was significantly higher in microspores of barley cv. 'Mercada' producing 90% albino regenerants, than in cv. 'Jersey' that developed 90% green regenerants. The ML microspores of cv. 'Mercada' contained a large proportion of amyloplasts filled with starch, while in cv. 'Jersey' there were only proplastids. Using additional spring barley genotypes that differed in their ability to regenerate green plants we confirmed the correlation between plastid differentiation prior to culture and albino regeneration in culture. The expression of GBSSI gene (Granule-bound starch synthaseI) in early-mid (EM) microspores was a good marker of a genotype potential to produce green regenerants during androgenesis. Initiating culture from EM microspores that significantly improved regeneration of green plants may overcome the problem of albinism.


Assuntos
Gametogênese Vegetal/fisiologia , Hordeum/fisiologia , Plastídeos/fisiologia , Pólen , Regeneração , Técnicas de Cultura de Tecidos
5.
Front Plant Sci ; 9: 216, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515615

RESUMO

TILLING (Targeting Induced Local Lesions IN Genomes) is a strategy used for functional analysis of genes that combines the classical mutagenesis and a rapid, high-throughput identification of mutations within a gene of interest. TILLING has been initially developed as a discovery platform for functional genomics, but soon it has become a valuable tool in development of desired alleles for crop breeding, alternative to transgenic approach. Here we present the HorTILLUS ( Hordeum-TILLING-University of Silesia) population created for spring barley cultivar "Sebastian" after double-treatment of seeds with two chemical mutagens: sodium azide (NaN3) and N-methyl-N-nitrosourea (MNU). The population comprises more than 9,600 M2 plants from which DNA was isolated, seeds harvested, vacuum-packed, and deposited in seed bank. M3 progeny of 3,481 M2 individuals was grown in the field and phenotyped. The screening for mutations was performed for 32 genes related to different aspects of plant growth and development. For each gene fragment, 3,072-6,912 M2 plants were used for mutation identification using LI-COR sequencer. In total, 382 mutations were found in 182.2 Mb screened. The average mutation density in the HorTILLUS, estimated as 1 mutation per 477 kb, is among the highest mutation densities reported for barley. The majority of mutations were G/C to A/T transitions, however about 8% transversions were also detected. Sixty-one percent of mutations found in coding regions were missense, 37.5% silent and 1.1% nonsense. In each gene, the missense mutations with a potential effect on protein function were identified. The HorTILLUS platform is the largest of the TILLING populations reported for barley and best characterized. The population proved to be a useful tool, both in functional genomic studies and in forward selection of barley mutants with required phenotypic changes. We are constantly renewing the HorTILLUS population, which makes it a permanent source of new mutations. We offer the usage of this valuable resource to the interested barley researchers on cooperative basis.

6.
Front Plant Sci ; 8: 1094, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28694814

RESUMO

The rhizosphere, the thin layer of soil surrounding and influenced by plant roots, defines a distinct and selective microbial habitat compared to unplanted soil. The microbial communities inhabiting the rhizosphere, the rhizosphere microbiota, engage in interactions with their host plants which span from parasitism to mutualism. Therefore, the rhizosphere microbiota emerges as one of the determinants of yield potential in crops. Studies conducted with different plant species have unequivocally pointed to the host plant as a driver of the microbiota thriving at the root-soil interface. Thus far, the host genetic traits shaping the rhizosphere microbiota are not completely understood. As root hairs play a critical role in resource exchanges between plants and the rhizosphere, we hypothesized that they can act as a determinant of the microbiota thriving at the root-soil interface. To test this hypothesis, we took advantage of barley (Hordeum vulgare) mutant lines contrasting for their root hair characteristics. Plants were grown in two agricultural soils, differentiating in their organic matter contents, under controlled environmental conditions. At early stem elongation rhizosphere specimens were collected and subjected to high-resolution 16S rRNA gene profiling. Our data revealed that the barley rhizosphere microbiota is largely dominated by members of the phyla Bacteroidetes and Proteobacteria, regardless of the soil type and the root hair characteristics of the host plant. Conversely, ecological indices calculated using operational taxonomic units (OTUs) presence, abundance, and phylogeny revealed a significant impact of root hair mutations on the composition of the rhizosphere microbiota. In particular, our data indicate that mutant plants host a reduced-complexity community compared to wild-type genotypes and unplanted soil controls. Congruently, the host genotype explained up to 18% of the variation in ecological distances computed for the rhizosphere samples. Importantly, this effect is manifested in a soil-dependent manner. A closer inspection of the sequencing profiles revealed that the root hair-dependent diversification of the microbiota is supported by a taxonomically narrow group of bacteria, with a bias for members of the orders Actinomycetales, Burkholderiales, Rhizobiales, Sphingomonadales, and Xanthomonadales. Taken together, our results indicate that the presence and function of root hairs are a determinant of the bacterial community thriving in the rhizosphere and their perturbations can markedly impact on the recruitment of individual members of the microbiota.

7.
J Appl Genet ; 55(4): 433-47, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24899566

RESUMO

Root hairs are tubular outgrowths of specialized epidermal cells called trichoblasts. They affect anchoring plants in soil, the uptake of water and nutrients and are the sites of the interaction between plants and microorganisms. Nineteen root hair mutants of barley representing different stages of root hair development were subjected to detailed morphological and genetic analyses. Each mutant was monogenic and recessive. An allelism test revealed that nine loci were responsible for the mutated root hair phenotypes in the collection and 1-4 mutated allelic forms were identified at each locus. Genetic relationships between the genes responsible for different stages of root hair formation were established. The linkage groups of four loci rhl1, rhp1, rhi1 and rhs1, which had previously been mapped on chromosomes 7H, 1H, 6H and 5H, respectively, were enriched with new markers that flank the genes at a distance of 0.16 cM to 4.6 cM. The chromosomal position of three new genes - two that are responsible for the development of short root hairs (rhs2 and rhs3) and the gene that controls an irregular root hair pattern (rhi2) - were mapped on chromosomes 6H, 2H and 1H, respectively. A comparative analysis of the agrobotanical parameters between some mutants and their respective parental lines showed that mutations in genes responsible for root hair development had no effect on the agrobotanical performance of plants that were grown under controlled conditions. The presented mutant collection is a valuable tool for further identification of genes controlling root hair development in barley.


Assuntos
Genes de Plantas/genética , Hordeum/crescimento & desenvolvimento , Hordeum/genética , Mutação/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Mapeamento Cromossômico , Cromossomos de Plantas , DNA de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
8.
J Appl Genet ; 53(4): 363-76, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22847350

RESUMO

The mechanisms of root hair formation have been studied extensively in Arabidopsis but knowledge about these processes in monocot species is still limited, especially in relation to the proteome level. The aim of this study was to identify the proteins that are involved in the initiation and the early stage of root hair tip growth in barley using two-dimensional (2D) electrophoresis and mass spectrometry. A comparison of proteins that accumulate differentially in two root hair mutants and their respective parent varieties resulted in the identification of 13 proteins that take part in several processes related to the root hair morphogenesis, such as the control of vesicular trafficking, ROS signalling and homeostasis, signal transduction by phospholipids metabolism and ATP synthesis. Among the identified proteins, two ATP synthases, two ABC transporters, a small GTPase from the SAR1 family, a PDI-like protein, a monodehydroascorbate reductase, a C2 domain-containing protein and a Wali7 domain-containing protein were found. This study is the first report on the proteins identified in the initial stage of root hair formation in barley and gives new insights into the mechanisms of root hair morphogenesis in a monocot species.


Assuntos
Hordeum/metabolismo , Proteínas de Plantas/análise , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Trifosfato de Adenosina/metabolismo , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica de Plantas , Genótipo , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Espectrometria de Massas/métodos , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Oxirredução , Proteínas de Plantas/genética , Raízes de Plantas/genética , Estrutura Terciária de Proteína , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...