Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychometrika ; 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831697

RESUMO

Item factor analysis (IFA), also known as Multidimensional Item Response Theory (MIRT), is a general framework for specifying the functional relationship between respondents' multiple latent traits and their responses to assessment items. The key element in MIRT is the relationship between the items and the latent traits, so-called item factor loading structure. The correct specification of this loading structure is crucial for accurate calibration of item parameters and recovery of individual latent traits. This paper proposes a regularized Gaussian Variational Expectation Maximization (GVEM) algorithm to efficiently infer item factor loading structure directly from data. The main idea is to impose an adaptive [Formula: see text]-type penalty to the variational lower bound of the likelihood to shrink certain loadings to 0. This new algorithm takes advantage of the computational efficiency of GVEM algorithm and is suitable for high-dimensional MIRT applications. Simulation studies show that the proposed method accurately recovers the loading structure and is computationally efficient. The new method is also illustrated using the National Education Longitudinal Study of 1988 (NELS:88) mathematics and science assessment data.

2.
Br J Math Stat Psychol ; 74 Suppl 1: 52-85, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33064318

RESUMO

Multidimensional item response theory (MIRT) is widely used in assessment and evaluation of educational and psychological tests. It models the individual response patterns by specifying a functional relationship between individuals' multiple latent traits and their responses to test items. One major challenge in parameter estimation in MIRT is that the likelihood involves intractable multidimensional integrals due to the latent variable structure. Various methods have been proposed that involve either direct numerical approximations to the integrals or Monte Carlo simulations. However, these methods are known to be computationally demanding in high dimensions and rely on sampling data points from a posterior distribution. We propose a new Gaussian variational expectation--maximization (GVEM) algorithm which adopts variational inference to approximate the intractable marginal likelihood by a computationally feasible lower bound. In addition, the proposed algorithm can be applied to assess the dimensionality of the latent traits in an exploratory analysis. Simulation studies are conducted to demonstrate the computational efficiency and estimation precision of the new GVEM algorithm compared to the popular alternative Metropolis-Hastings Robbins-Monro algorithm. In addition, theoretical results are presented to establish the consistency of the estimator from the new GVEM algorithm.


Assuntos
Algoritmos , Testes Psicológicos , Simulação por Computador , Humanos , Método de Monte Carlo , Distribuição Normal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...