Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 33688, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27646853

RESUMO

Over 40% of high-purity silicon (Si) is consumed as sludge waste consisting of Si, silicon carbide (SiC) particles and metal impurities from the fragments of cutting wire mixed in ethylene glycol based cutting fluid during Si wafer slicing in semiconductor fabrication. Recovery of Si from the waste Si sludge has been a great concern because Si particles are promising high-capacity anode materials for Li ion batteries. In this study, we report a novel one-step aerosol process that not only extracts Si particles but also generates Si-graphene (GR) composites from the colloidal mixture of waste Si sludge and graphene oxide (GO) at the same time by ultrasonic atomization-assisted spray pyrolysis. This process supports many advantages such as eco-friendly, low-energy, rapid, and simple method for forming Si-GR composite. The morphology of the as-formed Si-GR composites looked like a crumpled paper ball and the average size of the composites varied from 0.6 to 0.8 µm with variation of the process variables. The electrochemical performance was then conducted with the Si-GR composites for Lithium Ion Batteries (LIBs). The Si-GR composites exhibited very high performance as Li ion battery anodes in terms of capacity, cycling stability, and Coulombic efficiency.

2.
Sci Rep ; 5: 9431, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25819285

RESUMO

A large amount of silicon debris particles are generated during the slicing of silicon ingots into thin wafers for the fabrication of integrated-circuit chips and solar cells. This results in a significant loss of valuable materials at about 40% of the mass of ingots. In addition, a hazardous silicon sludge waste is produced containing largely debris of silicon, and silicon carbide, which is a common cutting material on the slicing saw. Efforts in material recovery from the sludge and recycling have been largely directed towards converting silicon or silicon carbide into other chemicals. Here, we report an aerosol-assisted method to extract silicon nanoparticles from such sludge wastes and their use in lithium ion battery applications. Using an ultrasonic spray-drying method, silicon nanoparticles can be directly recovered from the mixture with high efficiency and high purity for making lithium ion battery anode. The work here demonstrated a relatively low cost approach to turn wafer slicing wastes into much higher value-added materials for energy applications, which also helps to increase the sustainability of semiconductor material and device manufacturing.

3.
J Nanosci Nanotechnol ; 11(7): 6544-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121753

RESUMO

Zinc oxide (ZnO) and cerium oxide (CeO2) nanoparticles were deposited on the surface of preformed silica spheres with diameters ranging from 60 to 750 nm. Ultrasonic irradiation was employed to promote the deposition of the metal oxide nanoparticles on the surface of silica. Silica-supported zinc oxide or cerium oxide was used as a catalyst in the glycolysis of polyethylene terephthalate, one of the key processes in the depolymerization of polyethylene terephthalate. The effect of the support size on the catalytic activity was studied in terms of monomer yield, and the monomer concentration was analyzed via high-performance liquid chromatography (HPLC). The morphologies and surface properties of the catalysts were characterized using a scanning electron microscope, a transmission electron microscope, and a BET surface area analyzer, while the monomer was characterized via HPLC and nuclear-magnetic-resonance spectroscopy. Both the zinc oxide and cerium oxide deposited on a smaller support showed better distribution and less aggregation. The high specific surface area of the smaller support catalysts provided a large number of active sites. The highest monomer yield was obtained with a catalyst of 60-nm silica support.


Assuntos
Cério/química , Nanopartículas Metálicas/química , Polietilenotereftalatos/química , Dióxido de Silício/química , Óxido de Zinco/química , Catálise , Glicólise , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanotecnologia , Tamanho da Partícula , Porosidade , Propriedades de Superfície
4.
J Nanosci Nanotechnol ; 11(1): 824-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21446554

RESUMO

Polyethylene terephthalate (PET) was depolymerized to monomer bis(2-hydroxyethyl) terephthalate (BHET) using excess ethylene glycol (EG) in the presence of metal oxides that were impregnated on different forms of silica support [silica nanoparticles (SNPs) or silica microparticles (SMPs)] as glycolysis catalysts. The reactions were carried out at 300 degrees C and 1.1 MPa at an EG-to-PET molar ratio of 11:1 and a catalyst-to-PET-weight ratio of 1.0% for 40-80 min. Among the four prepared catalysts (Mn3O4/SNPs, ZnO/SNPs, Mn3O4/SMPs, and ZnO/SMPs), the Mn3O4/SNPs nanocomposite had the highest monomer yield (> 90%). This high yield may be explained by the high surface area, amorphous and porous structure, and existence of numerous active sites on the nanocomposite catalyst. The BHET yield increased with time and reached the highest level where equilibrium was established between BHET and its dimer. The catalysts were characterized by their SEM, TEM, and BET surface areas, and via XRD, whereas the monomer BHET was characterized by HPLC and FT-IR. The glycolysis with the Mn3O4/SNPs nanocomposite as the glycolysis catalyst produced a maximum BHET in a short reaction time.


Assuntos
Compostos de Manganês/química , Nanopartículas Metálicas/química , Nanocompostos/química , Óxidos/química , Polietilenotereftalatos/química , Óxido de Zinco/química , Catálise , Cromatografia Líquida de Alta Pressão , Etilenoglicol/química , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...