Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(6): 7130-7140, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315977

RESUMO

Colloidal PbS quantum-dot solar cells (QDSCs) have long suffered from inefficient charge collection near the back-junction due to the lack of p-doping strategy, rendering their bifacial photovoltaic applications unsuccessful. Here, we report highly efficient photocarrier collection in bifacial colloidal PbS QDSCs by exploiting spray-coated silver nanowires (AgNWs) top electrodes. During our spray-coating process, pressurized Ag diffusion occurred toward the active layer, which induced effective p-doping and deep-level passivation. By manipulating the spray pressure, optimum AgNWs' stacking morphology enabling an appropriate level of Ag diffusion could be achieved, leading to Jsc over 30 mA/cm2 from the conventional n-i-p structure upon light illumination to the film side. The morphological and electrical behaviors of AgNWs according to the spray pressure are comprehensively explained in relation to the device performance. Finally, 50 bifacial cells were fabricated over 49 cm2 sized glass substrate, demonstrating the large-area processability and functionality of the spray-coated AgNWs with the effective back-junction engineering.

2.
J Nanosci Nanotechnol ; 11(7): 6463-7, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121736

RESUMO

In a designed and developed ultrasonic nebulizer system for obtaining macroscopic-quantity photopolymerized fullerene (C60) clusters, a C60 solution was vaporized to several micro-sized droplets in vacuum, resulting in the formation of C60 aggregates by evaporating the solvent (toluene). The system was invented to produce nanoscale photopolymerized carbon clusters through the irradiation of ultraviolet (UV) light on the C60 aggregates in vacuum. The products, photopolymerized C60 clusters obtained from the system using UV-visible (UV-Vis) absorption and high-performance (or high-pressure) liquid chromatography (HPLC) spectra, were characterized. Compared with the non-irradiating C60 solution, the UV-Vis absorption spectrum of the irradiated C60 solution was drastically decreased, especially at lambda = 335 nm and in the visible region from lambda = 450-650 nm. As such, the UV-Vis absorption spectra provide information about the polymerization of C60 molecules. These photopolymerized C60 clusters can be detected as having a heavy molecular mass order through the HPLC system, and the C60 and photopolymerized C60 cluster can be extracted from the trapped solution on the molecular mass. Although there is a possibility that the products include various forms of C60 clusters, the results suggest that the products obtained from the system using a vaporizer establish a new method of obtaining macroscopic-quantity C60 clusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...