Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(6): 5655-5667, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38921009

RESUMO

In this in vivo study on hairless mice, we examined the effects of light-emitting diode (LED) treatment applied prior to ultraviolet B (UVB) irradiation. We found that pre-treating with LED improved skin morphological and histopathological conditions compared to those only exposed to UVB irradiation. In our study, histological evaluation of collagen and elastic fibers after LED treatment prior to UVB irradiation showed that this pretreatment significantly enhanced the quality of fibers, which were otherwise poor in density and irregularly arranged due to UV exposure alone. This suggests that LED treatment promotes collagen and elastin production, leading to improved skin properties. Additionally, we observed an increase in Claudin-1 expression and a reduction in nuclear factor-erythroid 2-related factor 2 (Nrf-2) and heme-oxygenase 1 (HO-1) expression within the LED-treated skin tissues, suggesting that LED therapy may modulate key skin barrier proteins and oxidative stress markers. These results demonstrate that pretreatment with LED light can enhance the skin's resistance to UVB-induced damage by modulating gene regulation associated with skin protection. Further investigations are needed to explore the broader biological effects of LED therapy on other tissues such as blood vessels. This study underscores the potential of LED therapy as a non-invasive approach to enhance skin repair and counteract the effects of photoaging caused by UV exposure.

2.
Foods ; 13(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38790840

RESUMO

The growing demand for sustainable and alternative protein sources has spurred interest in insect-based and plant-based proteins. Protaetia brevitarsis (PB) larvae and isolated soy protein (ISP) are notable in this regard, offering potential health benefits and nutritional enhancements. We assessed the feasibility of PB larvae and ISP mixtures as alternative food ingredients. Methods included the optimized purification and freeze-drying of PB larvae, extraction and refinement of legume proteins, physicochemical and antioxidant capacity evaluations, DPPH radical scavenging activity measurement, total phenolic and flavonoids content quantification, general component analysis, amino acid profiling using HPLC, fatty acid profiling through gas chromatography, and mineral content analysis using inductively coupled plasma spectrometry. The study found that certain PB:ISP ratios, particularly a 7:3 ratio, significantly improved the blend's antioxidant capacity, as evidenced by DPPH scavenging activity. This ratio also impacted the nutritional profile by altering the mixture's general components, with a notable increase in moisture, crude protein, and fiber and a decrease in crude fat and ash. Amino acid analysis revealed a balanced presence of essential and non-essential amino acids. The fatty acid profile was rich in unsaturated fatty acids, especially in certain ratios. Mineral analysis showed a complex interplay between PB larvae and ISP, with some minerals decreasing and others increasing in the blend. PB larvae and ISP mixtures have significant potential as alternative protein sources, offering a diversified nutritional profile and enhanced antioxidant properties. The 7:3 ratio of PB larvae to ISP has been shown to be particularly effective, suggesting that this ratio may offer an optimal balance for enhancing the overall nutritional quality of the mixture. This study sets the stage for future research to further explore and optimize the potential of these mixtures for human consumption while considering the challenges of consumer acceptance and long-term safety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...