Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Stem Cells ; 17(2): 158-181, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38777830

RESUMO

This study offers a comprehensive overview of brain organoids for researchers. It combines expert opinions with technical summaries on organoid definitions, characteristics, culture methods, and quality control. This approach aims to enhance the utilization of brain organoids in research. Brain organoids, as three-dimensional human cell models mimicking the nervous system, hold immense promise for studying the human brain. They offer advantages over traditional methods, replicating anatomical structures, physiological features, and complex neuronal networks. Additionally, brain organoids can model nervous system development and interactions between cell types and the microenvironment. By providing a foundation for utilizing the most human-relevant tissue models, this work empowers researchers to overcome limitations of two-dimensional cultures and conduct advanced disease modeling research.

2.
Biochem Biophys Res Commun ; 698: 149538, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38271836

RESUMO

Due to the large size and high flexibility of the catalytic active site of BACE1 enzyme, the development of nonpeptide inhibitors with optimal pharmacological properties is still highly demanding. In this work, we have discovered 2-aminobenzimidazole-containg ether scaffolds having potent and selective inhibitory potentials against BACE1 enzyme. We have synthesized novel 29 compounds and optimization of aryl linker region resulted in highly potent BACE1 inhibitory activities with EC50 values of 0.05-2.71 µM. The aryloxy-phenyl analogs 20j showed the EC50 value as low as 0.07 µM in the enzyme assay, whereas, the benzyloxyphenyl dervative 24b was comparatively less effective in the enzyme assay. But interestingly the latter was more effective in the cell assay (EC50 value 1.2 µM). While comparing synthesized derivatives in the cell assay using PC12-APPSW cell, compound 27f appeared as the most potent BACE1 inhibitor having EC50 value 0.7 µM. This scaffold also showed high selectivity over BACE2 enzyme and cathepsin D. Furthermore, the research findings were bolstered through the incorporation of molecular docking, molecular dynamics, and DFT studies. We firmly believe that these discoveries will pave the way for the development of a novel class of small-molecule selective BACE1 inhibitors.


Assuntos
Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Benzimidazóis , Humanos , Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Benzimidazóis/farmacologia , Éteres , Simulação de Acoplamento Molecular , Desenho de Fármacos
3.
Ann Clin Transl Neurol ; 10(7): 1170-1185, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37302988

RESUMO

OBJECTIVES: Sporadic mutations in MeCP2 are a hallmark of Rett syndrome (RTT). Many RTT brain organoid models have exhibited pathogenic phenotypes such as decreased spine density and small size of soma with altered electrophysiological signals. However, previous models are mainly focused on the phenotypes observed in the late phase and rarely provide clues for the defect of neural progenitors which generate different types of neurons and glial cells. METHODS: We newly established the RTT brain organoid model derived from MeCP2-truncated iPS cells which were genetically engineered by CRISPR/Cas9 technology. By immunofluorescence imaging, we studied the development of NPC pool and its fate specification into glutamatergic neurons or astrocytes in RTT organoids. By total RNA sequencing, we investigated which signaling pathways were altered during the early brain development in RTT organoids. RESULTS: Dysfunction of MeCP2 caused the defect of neural rosette formation in the early phase of cortical development. In total transcriptome analysis, BMP pathway-related genes are highly associated with MeCP2 depletion. Moreover, levels of pSMAD1/5 and BMP target genes are excessively increased, and treatment of BMP inhibitors partially rescues the cell cycle progression of neural progenitors. Subsequently, MeCP2 dysfunction reduced the glutamatergic neurogenesis and induced overproduction of astrocytes. Nevertheless, early inhibition of BMP pathway rescued VGLUT1 expression and suppressed astrocyte maturation. INTERPRETATION: Our results demonstrate that MeCP2 is required for the expansion of neural progenitor cells by modulating BMP pathway at early stages of development, and this influence persists during neurogenesis and gliogenesis at later stages of brain organoid development.


Assuntos
Células-Tronco Neurais , Síndrome de Rett , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Encéfalo/patologia , Síndrome de Rett/genética , Neurônios/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Transdução de Sinais
4.
Acta Pharm Sin B ; 13(3): 1093-1109, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36970199

RESUMO

Interleukin-1 receptor-associated kinase 4 (IRAK4) is a pivotal enzyme in the Toll-like receptor (TLR)/MYD88 dependent signaling pathway, which is highly activated in rheumatoid arthritis tissues and activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL). Inflammatory responses followed by IRAK4 activation promote B-cell proliferation and aggressiveness of lymphoma. Moreover, proviral integration site for Moloney murine leukemia virus 1 (PIM1) functions as an anti-apoptotic kinase in propagation of ABC-DLBCL with ibrutinib resistance. We developed a dual IRAK4/PIM1 inhibitor KIC-0101 that potently suppresses the NF-κB pathway and proinflammatory cytokine induction in vitro and in vivo. In rheumatoid arthritis mouse models, treatment with KIC-0101 significantly ameliorated cartilage damage and inflammation. KIC-0101 inhibited the nuclear translocation of NF-κB and activation of JAK/STAT pathway in ABC-DLBCLs. In addition, KIC-0101 exhibited an anti-tumor effect on ibrutinib-resistant cells by synergistic dual suppression of TLR/MYD88-mediated NF-κB pathway and PIM1 kinase. Our results suggest that KIC-0101 is a promising drug candidate for autoimmune diseases and ibrutinib-resistant B-cell lymphomas.

5.
Molecules ; 27(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35744952

RESUMO

Direct inhibitors of glycogen synthase kinase 3ß (GSK3ß) have been investigated and reported for the past 20 years. In the search for novel scaffold inhibitors, 3000 compounds were selected through structure-based virtual screening (SBVS), and then high-throughput enzyme screening was performed. Among the active hit compounds, pyrazolo [1,5-a]pyrimidin-7-amine derivatives showed strong inhibitory potencies on the GSK3ß enzyme and markedly activated Wnt signaling. The result of the molecular dynamics (MD) simulation, enhanced by the upper-wall restraint, was used as an advanced structural query for the SBVS. In this study, strong inhibitors designed to inhibit the GSK3ß enzyme were discovered through SBVS. Our study provides structural insights into the binding mode of the inhibitors for further lead optimization.


Assuntos
Simulação de Dinâmica Molecular , Via de Sinalização Wnt , Glicogênio Sintase Quinase 3 beta
6.
Biomedicines ; 10(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35453609

RESUMO

Cancer stem cells (CSCs) are a tumor cell subpopulation that drives tumor progression and metastasis, leading to a poor overall survival of patients. In colorectal cancer (CRC), the hyper-activation of Wnt/ß-catenin signaling by a mutation of both adenomatous polyposis coli (APC) and K-Ras increases the size of the CSC population. We previously showed that CPD0857 inactivates Wnt/ß-catenin signaling by promoting the ubiquitin-dependent proteasomal degradation of ß-catenin and Ras proteins, thereby decreasing proliferation and increasing the apoptosis of CRC lines. CPD0857 also decreased the growth and invasiveness of CRC cells harboring mutant K-Ras resistant to EGFR mAb therapy. Here, we show that CPD0857 treatment decreases proliferation and increases the neuronal differentiation of neural progenitor cells (NPCs). CDP0857 effectively reduced the expression of CSC markers and suppressed self-renewal capacity. CPD0857 treatment also inhibited the proliferation and expression of CSC markers in D-K-Ras MT cells carrying K-Ras, APC and PI3K mutations, indicating the inhibition of PI3K/AKT signaling. Moreover, CPD0857-treated xenograft mice showed a regression of tumor growth and decreased numbers of CSCs in tumors. We conclude that CPD0857 could serve as the basis of a drug development strategy targeting CSCs activated through Wnt/ß-catenin-Ras MAPK-PI3K/AKT signaling in CRCs.

7.
Lab Chip ; 22(9): 1764-1778, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35244110

RESUMO

Sensing devices have shown tremendous potential for monitoring state-of-the-art organ chip devices. However, challenges like miniaturization while maintaining higher performance, longer operating times for continuous monitoring, and fabrication complexities limit their use. Herein simple, low-cost, and solution-processible inkjet dispenser printing of embedded electrochemical sensors for dissolved oxygen (DO) and reactive oxygen species (ROS) is proposed for monitoring developmental (initially normoxia) and induced hypoxia in a custom-developed gut bilayer microfluidic chip platform for 6 days. The DO sensors showed a high sensitivity of 31.1 nA L mg-1 with a limit of detection (LOD) of 0.67 mg L-1 within the 0-9 mg L-1 range, whereas the ROS sensor had a higher sensitivity of 1.44 nA µm-1 with a limit of detection of 1.7 µm within the 0-300 µm range. The dynamics of the barrier tight junctions are quantified with the help of an in-house developed trans-epithelial-endothelial electrical impedance (TEEI) sensor. Immunofluorescence staining was used to evaluate the expressions of HIF-1α and tight junction protein (TJP) ZO-1. This platform can also be used to enhance bioavailability assays, drug transport studies under an oxygen-controlled environment, and even other barrier organ models, as well as for various applications like toxicity testing, disease modeling and drug screening.


Assuntos
Hipóxia , Microfluídica , Avaliação Pré-Clínica de Medicamentos , Humanos , Oxigênio , Espécies Reativas de Oxigênio
8.
Pharmaceutics ; 15(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36678670

RESUMO

We designed colon-targeted trans-cinnamic acid (tCA) and synthesized its conjugates with glutamic acid (tCA-GA) and aspartic acid (tCA-AA). We evaluated the anti-colitic activity of colon-targeted tCA using a dinitrobenzenesulfonic acid-induced rat colitis model. The conjugates lowered the distribution coefficient and Caco-2 cell permeability of tCA and converted to tCA in the cecum, with higher rates and percentages with tCA-GA than with tCA-AA. Following oral gavage, tCA-GA delivered a higher amount of tCA to the cecum and exhibited better anti-colitic effects than tCA and sulfasalazine (SSZ), which is the current treatment for inflammatory bowel disease. In the cellular assay, tCA acted as a full agonist of GPR109A (EC50: 530 µM). The anti-colitic effects of tCA-GA were significantly compromised by the co-administration of the GPR109A antagonist, mepenzolate. Collectively, colon-targeted tCA potentiated the anti-colitic activity of tCA by effectively activating GPR109A in the inflamed colon, enabling tCA to elicit therapeutic superiority over SSZ.

9.
STAR Protoc ; 2(4): 100849, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34611628

RESUMO

Because glioblastoma (GBM) exhibits high heterogeneity, it is desirable to use patient-derived cells from the first stage of screening for GBM drug discovery. Here, we describe a protocol to culture patient-derived GBM cells on the extracellular matrix-coated plates to allow high-throughput screening. Further, we detail approaches to identify the mechanism of action (MOA) of the selected effective drug through proteomics. This protocol will be useful for researchers interested in drug screening and the MOA of drugs. For complete details on the use and execution of this protocol, please refer to Nam et al. (2021).


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Glioblastoma/tratamento farmacológico , Humanos , Proteômica/métodos
10.
iScience ; 24(3): 102238, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33748720

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor with poor survival rate. Temozolomide (TMZ) is used as standard chemotherapy to treat GBM, but a large number of patients either respond poorly and/or develop resistance after long-term use, emphasizing the need to develop potent drugs with novel mechanisms of action. Here, using high-throughput compound screening (HTS), we found that azathioprine, an immunosuppressant, is a promising therapeutic agent to treat TMZ-resistant GBM. Through integrative genome-wide analysis and global proteomic analysis, we found that elevated lipid metabolism likely due to hyperactive EGFR/AKT/SREBP-1 signaling was inhibited by azathioprine. Azathioprine also promoted ER stress-induced apoptosis. Analysis of orthotopic xenograft models injected with patient-derived GBM cells revealed reduced tumor volume and increased apoptosis after azathioprine and TMZ co-treatment. These data indicate that azathioprine could be a powerful therapeutic option for TMZ-resistant GBM patients.

11.
Target Oncol ; 15(5): 645-657, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33026592

RESUMO

BACKGROUND: Oncogenic K-Ras mutations in colorectal cancer (CRC) combined with APC mutations worsen CRC prognosis and lower drug effectiveness. Thus, inhibition of both Wnt/ß-catenin and Ras-MAPK signaling may be a rational strategy to improve the treatment of this cancer. OBJECTIVE: To identify a novel compound inhibiting both Wnt/ß-catenin and Ras-MAPK signaling in CRC. METHODS AND PATIENTS: We developed a two-part screening system consisting of analysis of TOP flash reporter cells and then potential toxicity effects on primary neural stem cells (NSCs). We then screened 2000 chemical compounds and tested efficacy of candidates against isogenic colon cancer cells harboring wild-type or mutant K-Ras. We employed immunohistochemistry and immunocytochemistry to determine marker signatures associated with development of disease phenotypes. RESULTS: We identified CPD0857, a compound that inactivates Wnt/ß-catenin signaling and promotes ubiquitin-dependent proteasomal degradation of ß-catenin and Ras proteins. CPD0857 effectively decreased proliferation and increased apoptosis of CRC cell lines, and overcame resistance of CRC harboring APC and K-Ras mutations to treatment with an EGFR monoclonal antibody (mAb). Moreover, CPD0857 attenuated invasiveness of highly migratory CRC cells in vitro. Accordingly, xenograft mice treated with CPD0857 showed slower tumor growth and significant decreases in both ß-catenin and Ras protein expression. CONCLUSIONS: CPD0857 may be a potential drug for treating aggressive CRC carrying mutations that aberrantly activate Wnt/ß-catenin and Ras-ERK pathways.


Assuntos
Neoplasias Colorretais/genética , beta Catenina/metabolismo , Proteínas ras/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Receptores ErbB/antagonistas & inibidores , Humanos , Camundongos , Mutação
12.
J Inflamm (Lond) ; 17: 20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32514255

RESUMO

BACKGROUND: Atopic dermatitis (eczema) is a type of inflammation of the skin, which presents with itchy, red, swollen, and cracked skin. The high global incidence of atopic dermatitis makes it one of the major skin diseases threatening public health. Sphingosylphosphorylcholine (SPC) and sphingosine-1-phosphate (S1P) act as pro-inflammatory mediators, as an angiogenesis factor and a mitogen in skin fibroblasts, respectively, both of which are important biological responses to atopic dermatitis. The SPC level is known to be elevated in atopic dermatitis, resulting from abnormal expression of sphingomyelin (SM) deacylase, accompanied by a deficiency in ceramide. Also, S1P and its receptor, sphingosine-1-phosphate receptor 1 (S1P1) are important targets in treating atopic dermatitis. RESULTS: In this study, we found a novel antagonist of SPC and S1P1, KRO-105714, by screening 10,000 compounds. To screen the compounds, we used an SPC-induced cell proliferation assay based on a high-throughput screening (HTS) system and a human S1P1 protein-based [35S]-GTPγS binding assay. In addition, we confirmed the inhibitory effects of KRO-105714 on atopic dermatitis through related cell-based assays, including a tube formation assay, a cell migration assay, and an ELISA assay on inflammatory cytokines. Finally, we confirmed that KRO-105714 alleviates atopic dermatitis symptoms in a series of mouse models. CONCLUSIONS: Taken together, our data suggest that SPC and S1P1 antagonist KRO-105714 has the potential to alleviate atopic dermatitis.

13.
RSC Adv ; 10(33): 19382-19389, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35515479

RESUMO

Neural cell differentiation has been extensively studied in two-dimensional (2D) cell culture plates. However, the cellular microenvironment and extracellular matrix (ECM) are much more complex and flat 2D surfaces are hard to mimic in ECM. Carbon nanotubes (CNTs) and graphenes are multidimensional carbon-based nanomaterials and may be able to provide extra dimensions on cell growth and differentiation. To determine the effect of CNTs and graphene surfaces on the growth, gene expression, differentiation and functionality of neuroblastoma to a neural cell, SH-SY5Y cells were grown on a 2D (control) surface, a CNT network and a graphene film. The data suggest that SH-SY5Y cells grown on CNT surfaces show an average 20.2% increase in cell viability; 5.7% decrease in the ratio of cells undergoing apoptosis; 78.3, 43.4 and 38.1% increases in SOX2, GFAP and NeuN expression, respectively; and a 29.7% increase in mean firing rate on a multi-electrode array. SH-SY5Y cells grown on graphene film show little or no changes in cell properties compared to cells grown in 2D. The data indicate that the three-dimensional (3D) surface of CNTs provides a favorable environment for SH-SY5Y cells to proliferate and differentiate to neurons.

14.
Mol Pharm ; 17(1): 167-179, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31743034

RESUMO

To develop a 5-aminosalicylic acid (5-ASA)-based anticolitic drug with enhanced therapeutic activity, a colon-targeted codrug constituting 5-ASA and a GPR109A agonist was designed. 5-ASA azo-coupled with nicotinic acid (ASA-azo-NA) was synthesized, and the colon specificity and anticolitic effects were evaluated. Approximately 89% of ASA-azo-NA was converted to 5-aminonicotinic acid (5-ANA) and 5-ASA after 24 h of incubation in the cecal contents. 5-ANA was identified as a GPR109A agonist (concentration that gives half-maximal response (EC50): 18 µM) in a cell-based assay. Upon oral gavage of ASA-azo-NA (oral ASA-azo-NA) and sulfasalazine (oral SSZ), a colon-targeted 5-ASA prodrug, cecal accumulation of 5-ASA was comparable, and 5-ANA was barely detectable in the blood, while it was detected up to 62.7 µM with oral 5-ANA. In parallel, oral ASA-azo-NA did not elicit an adverse skin response. In murine macrophage and human colon carcinoma cells, activation of GPR109A by 5-ANA elevated the level of the anti-inflammatory cytokine IL-10, suppressed NF-κB activation, and potentiated the inhibitory activity of 5-ASA on NF-κB. Oral ASA-azo-NA ameliorated rat colitis and was more effective than oral SSZ, which were substantially blunted following cotreatment with the GPR109A antagonist, mepenzolate. In conclusion, ASA-azo-NA is a colon-targeted anticolitic codrug with a reduced risk of skin toxicity induced by the GPR109A agonist, therapeutically surpassing a current 5-ASA-based anti-inflammatory bowel disease drug in a rat colitis model.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Colite/tratamento farmacológico , Colo/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/uso terapêutico , Anti-Inflamatórios não Esteroides/toxicidade , Linhagem Celular Tumoral , Cromatografia Líquida , Colite/metabolismo , Colo/patologia , Sistemas de Liberação de Medicamentos , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Interleucina-10/metabolismo , Masculino , Mesalamina/sangue , Mesalamina/uso terapêutico , Camundongos , NF-kappa B/metabolismo , Ácidos Nicotínicos/sangue , Ácidos Nicotínicos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Sulfassalazina/farmacologia , Sulfassalazina/uso terapêutico
15.
Eur J Pharm Sci ; 104: 366-381, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28435076

RESUMO

Translocator protein (TSPO) is involved in modulating mitochondrial permeability transition pore (mPTP) opening/closure leading to either apoptotic cell death via opening of mPTP or cell protection mediated by mPTP blocking and hence intercepting mPTP induced apoptosis. Herein, 2-(2-aryloxyphenyl)-1,4-dihydroisoquinolin-3(2H)-one derivatives have been designed and synthesized as new modulators for amyloid-ß-induced mPTP opening. Among all, compound 7c remarkably enhanced mPTP opening while compound 7e showed the highest mPTP blocking activity. Molecular modelling study revealed different binding modes which might underlie the observed opposing biological activities. Both compounds bound to the translocator protein 18kDa (TSPO) in low micromolar range and elicited good profiles on CYP2D6 and CYP1A2. Taken as a whole, this report presents compound 7e as a hit TSPO ligand for treatment of neurodegenerative diseases and compound 7c as a hit TSPO ligand for promoting cell death of cells over-expressing TSPO.


Assuntos
Peptídeos beta-Amiloides , Isoquinolinas/química , Isoquinolinas/farmacologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Modelos Moleculares , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Ligantes , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos
16.
EBioMedicine ; 18: 261-273, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28396011

RESUMO

Nuclear factor of activated T cells 5 (NFAT5) has been implicated in the pathogenesis of various human diseases, including cancer and arthritis. However, therapeutic agents inhibiting NFAT5 activity are currently unavailable. To discover NFAT5 inhibitors, a library of >40,000 chemicals was screened for the suppression of nitric oxide, a direct target regulated by NFAT5 activity, through high-throughput screening. We validated the anti-NFAT5 activity of 198 primary hit compounds using an NFAT5-dependent reporter assay and identified the novel NFAT5 suppressor KRN2, 13-(2-fluoro)-benzylberberine, and its derivative KRN5. KRN2 inhibited NFAT5 upregulation in macrophages stimulated with lipopolysaccharide and repressed the formation of NF-κB p65-DNA complexes in the NFAT5 promoter region. Interestingly, KRN2 selectively suppressed the expression of pro-inflammatory genes, including Nos2 and Il6, without hampering high-salt-induced NFAT5 and its target gene expressions. Moreover, KRN2 and KRN5, the latter of which exhibits high oral bioavailability and metabolic stability, ameliorated experimentally induced arthritis in mice without serious adverse effects, decreasing pro-inflammatory cytokine production. Particularly, orally administered KRN5 was stronger in suppressing arthritis than methotrexate, a commonly used anti-rheumatic drug, displaying better potency and safety than its original compound, berberine. Therefore, KRN2 and KRN5 can be potential therapeutic agents in the treatment of chronic arthritis.


Assuntos
Fatores de Transcrição NFATC/metabolismo , Animais , Artrite/etiologia , Artrite/patologia , Artrite/prevenção & controle , Berberina/análogos & derivados , Berberina/farmacologia , Berberina/uso terapêutico , Sítios de Ligação , Células Cultivadas , Imunoprecipitação da Cromatina , Colágeno/toxicidade , Citocinas/análise , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Inflamação/patologia , Articulações/efeitos dos fármacos , Articulações/metabolismo , Articulações/patologia , Lipopolissacarídeos/toxicidade , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/antagonistas & inibidores , Fatores de Transcrição NFATC/genética , Óxido Nítrico/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Células RAW 264.7 , Baço/citologia , Ativação Transcricional/efeitos dos fármacos
17.
Clin Exp Metastasis ; 33(5): 417-29, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26957434

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor. Since differentiation can attenuate or halt the growth of tumor cells, an image-based phenotypic screening was performed to find out drugs inducing morphological differentiation of GBMs. Bexarotene, a selective retinoid X receptor agonist, showed strong inhibition of neurospheroidal colony formation and migration of cultured primary GBM cells. Bexarotene treatment reduced nestin expression, while significantly increasing glial fibrillary acidic protein (GFAP) expression. The effect of bexarotene on gene expression profile was compared with the activity of all-trans retinoic acid (ATRA), a well-known differentiation inducer. Both drugs largely altered the gene expression pattern into a tumor-ameliorating direction. These drugs increased the gene expression levels of Krüppel-like factor 9 (KLF9), regulator of G-protein signaling 4 (RGS4), growth differentiation factor 15 (GDF15), angiopoietin-like protein 4 (ANGPTL4), and lowered the level of chemokine receptor type 4 (CXCR4). However, transglutaminase 2 (TG2) induction, an adverse effect of ATRA, was much weaker in bexarotene treated primary GBM cells. Consistently, the TG2 enzymatic activity was negligibly affected by bexarotene treatment. It is important to control TG2 overexpression since its upregulation is correlated with tumor transformation and drug resistance. Bexarotene also showed in vivo tumoricidal effects in a GBM xenograft mouse model. Therefore, we suggest bexarotene as a more beneficial differentiation agent than ATRA for GBM.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proteínas de Ligação ao GTP/genética , Glioblastoma/tratamento farmacológico , Tetra-Hidronaftalenos/administração & dosagem , Transglutaminases/genética , Proteína 4 Semelhante a Angiopoietina , Angiopoietinas/biossíntese , Animais , Bexaroteno , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proteínas de Ligação ao GTP/biossíntese , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/patologia , Fator 15 de Diferenciação de Crescimento/biossíntese , Humanos , Fatores de Transcrição Kruppel-Like/biossíntese , Camundongos , Proteína 2 Glutamina gama-Glutamiltransferase , Proteínas RGS/biossíntese , Receptores CXCR4/biossíntese , Receptores X de Retinoides/agonistas , Transdução de Sinais/efeitos dos fármacos , Transglutaminases/biossíntese , Tretinoína/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Bioorg Med Chem Lett ; 26(1): 51-4, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26608551

RESUMO

Synthesis, SAR study and BACE1 inhibitory activity of (3S,4S)-4-aminopyrrolidine-3-ol derivatives (2) were described. The compound 7c exhibited more inhibition activity than 11a (IC50: 0.05µM vs 0.12µM, respectively), but the latter was more effective in cell-based assay (IC50: 1.7µM vs 40% inhibition by 7c @ 10µM) due to the relatively higher cell permeability. Most of the compounds showed high selectivity over BACE2 and cathepsin D. This work will provide useful information for further structural modifications to develop potent BACE1 inhibitors in cell.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Inibidores de Proteases/síntese química , Inibidores de Proteases/farmacologia , Pirrolidinas/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Células PC12 , Inibidores de Proteases/química , Pirrolidinas/síntese química , Pirrolidinas/química , Ratos , Relação Estrutura-Atividade
19.
Eur J Med Chem ; 103: 210-22, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26355532

RESUMO

Herein, we report new quinazoline-urea based compounds with potent cytotoxic activities against TMZ-resistant glioblastoma multiforme (GBM) cells. Low micromolar IC50 values were exhibited over a panel of three primary GBM patient-derived cell cultures belonging to proneural (GBM-1), mesenchymal (GBM-2), and classical (GBM-3) subtypes. Eight compounds showed excellent selectivity indices for GBM cells comparing to a normal astrocyte cell line. In JC-1 assay, analogues 11, 12, 20, 22, and 24 exerted promising rates of mPTP opening induction towards proneural GBM subtype. Compounds 11, 20, and 24 bound to the translocator protein 18 kDa (TSPO) in submicromolar range using [(3)H] PK-11195 binding affinity assay. A homology model was built and docked models of 11, 12, 20, 22 and 24 were generated for describing their plausible binding modes in TSPO. In 3D clonogenic assay, compound 20 manifested potent tumoricidal effects on TMZ-resistant GBM cells even at submicromolar concentrations. In addition, CYP450 and hERG assays presented a safe toxicity profile of 20. Taken as a whole, this report presents compound 20 as a potent, selective and safe GBM cytotoxic agent which constitutes a promising direction against TMZ-resistant GBM.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Quinazolinas/farmacologia , Ureia/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/patologia , Humanos , Modelos Moleculares , Conformação Molecular , Quinazolinas/química , Relação Estrutura-Atividade , Temozolomida , Ureia/análogos & derivados , Ureia/química
20.
Arch Pharm Res ; 38(6): 1019-32, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25599616

RESUMO

Even though nicotinic acid (niacin) appears to have beneficial effects on human lipid profiles, niacin-induced cutaneous vasodilatation called flushing limits its remedy to patient. GPR109A is activated by niacin and mediates the anti-lipolytic effects. Based on the hypothesis that ß-arrestin signaling mediates niacin-induced flushing, but not its anti-lipolytic effect, we tried to find GPR109A agonists which selectively elicit Gi-protein-biased signaling devoid of ß-arrestin internalization using a ß-lactamase assay. We identified a 4-(phenyl)thio-1H-pyrazole as a novel scaffold for GPR109A agonist in a high throughput screen, which has no carboxylic acid moiety known to be important for binding. While 1-nicotinoyl derivatives (5a-g, 6a-e) induced ß-arrestin recruitment, 1-(pyrazin-2-oyl) derivatives were found to play as G-protein-biased agonists without GPR109A receptor internalization. The activity of compound 5a (EC50 = 45 nM) was similar to niacin (EC50 = 52 nM) and MK-6892 (EC50 = 74 nM) on calcium mobilization assay, but its activity at 10 µM on ß-arrestin recruitment were around two and five times weaker than niacin and MK-6892, respectively. The development of G-protein biased GPR109A ligands over ß-arrestin pathway is attainable and might be important in differentiation of pharmacological efficacy.


Assuntos
Agonistas Nicotínicos/síntese química , Agonistas Nicotínicos/farmacologia , Pirazóis/síntese química , Pirazóis/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Animais , Arrestinas/efeitos dos fármacos , Células CHO , Sinalização do Cálcio/efeitos dos fármacos , Cricetinae , Cricetulus , Ácidos Cicloexanocarboxílicos/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Indicadores e Reagentes , Niacina/farmacologia , Oxidiazóis/farmacologia , Receptores Nicotínicos , Relação Estrutura-Atividade , beta-Arrestinas , beta-Lactamases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...