Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 25(1): 2313957, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444591

RESUMO

The fillers inside a polymer matrix should typically be self-assembled in both the horizontal and vertical directions to obtain 3-dimentional (3D) percolation pathways, whereby the fields of application can be expanded and the properties of organic-inorganic composite films improved. Conventional dielectrophoresis techniques can typically only drive fillers to self-assemble in only one direction. We have devised a one-step dielectrophoresis-driven approach that effectively induces fillers self-assembly along two orthogonal axes, which results in the formation of 3D interconnected T-shaped iron microstructures (3D-T CIP) inside a polymer matrix. This approach to carbonyl iron powder (CIP) embedded in a polymer matrix results in a linear structure along the thickness direction and a network structure on the top surface of the film. The fillers in the polymer were controlled to achieve orthogonal bidirectional self-assembly using an external alternating current (AC) electric field and a non-contact technique that did not lead to electrical breakdown. The process of 3D-T CIP formation was observed in real time using in situ observation methods with optical microscopy, and the quantity and quality of self-assembly were characterized using statistical and fractal analysis. The process of fillers self-assembly along the direction perpendicular to the electric field was explained by finite element analogue simulations, and the results indicated that the insulating polyethylene terephthalate (PET) film between the electrode and the CIP/prepolymer suspension was the key to the formation of the 3D-T CIP. In contrast to the traditional two-step method of fabricating sandwich-structured film, the fabricated 3D-T CIP film with 3D electrically conductive pathways can be applied as magnetic field sensor.


A one-step electric field-induced self-assembly method was developed to efficiently control the self-assembly of fillers along two orthogonal axes to form three-dimensional interconnected T-shaped microstructure assembles of carbonyl iron powder inside a polymer matrix.

2.
Sci Technol Adv Mater ; 24(1): 2260301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854120

RESUMO

This study introduces an approach to overcome the limitations of conventional pressure sensors by developing a thin and lightweight composite film specifically tailored for flexible capacitive pressure sensors, with a particular emphasis on the medium and high pressure range. To accomplish this, we have engineered a composite film by combining polyvinylidene fluoride (PVDF) and graphite nanoplatelets (GNP) derived from expanded graphite (Ex-G). A uniform sized GNPs with an average lateral size of 2.55av and an average thickness of 33.74 av with narrow size distribution was obtained with a gas-induced expansion of expandable graphite (EXP-G) combined with tip sonication in solvent. By this precisely controlled GNP within the composite film, a remarkable improvement in sensor sensitivity has been achieved, surpassing 4.18 MPa-1 within the pressure range of 0.1 to 1.6 MPa. This enhancement can be attributed to the generation of electric charge from the movement of GNP in the polymer matrix. Additionally, stability testing has demonstrated the reliable operation of the composite film over 1000 cycles. Notably, the composite film exhibits exceptional continuous pressure sensing capabilities with a rapid response time of approximately 100 milliseconds. Experimental validation using a 3 × 3 sensor array has confirmed the accurate detection of specific contact points, thus highlighting the potential of the composite film in selective pressure sensing. These findings signify an advancement in the field of flexible capacitive pressure sensors that offer enhanced sensitivity, consistent operation, rapid response time, and the unique ability to selectively sense pressure.

3.
J Hazard Mater ; 438: 129412, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35780731

RESUMO

A suitable and non-invasive methanol sensor workable in ambient temperature conditions with a high response has gained wide interest to prevent detrimental consequences for industrial workers from its low-level intoxication. In this work, we present a tunable and highly responsive ppb-level methanol gas sensor device working at room temperature via a bottom-up synthetic approach using exfoliated graphene sheet (EGs) and ZnO quantum dots (QDs) on an aluminum anodic oxide (AAO) template. It is verified that EGs-supported AAO with a vertical electrode configuration enabled high and fast-responsive methanol sensing. Moreover, the hydroxyl and carboxyl groups of the high surface area EGs and ZnO QDs with a 3.37 eV bandgap efficiently absorbing UV light led to 56 times high response due to the enhanced polarization on the sensor surface compared to non-UV-radiated EGs/AAO at 800 ppb of methanol. The optimal resonance frequency of methanol is determined to be 100 kHz, which could detect methanol with high response of 2.65% at 100 ppm. The limit of detection (LOD) concentration is obtained at 2 ppb level. This study demonstrates the potential of UV-assisted ZnO, EGs, and AAO-based capacitance sensor material for rapidly detecting hazardous gaseous light organic molecules at ambient conditions, and the overall approach can be easily expanded to a novel non-invasive monitoring strategy for light and hazardous volatile organic exposures.


Assuntos
Grafite , Nanoestruturas , Óxido de Zinco , Óxido de Alumínio/química , Gases , Grafite/química , Humanos , Metanol , Nanoestruturas/química , Temperatura , Óxido de Zinco/química
4.
Materials (Basel) ; 15(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35744268

RESUMO

Thermoelectric generators are solid-state energy-converting devices that are promising alternative energy sources. However, during the fabrication of these devices, many waste scraps that are not eco-friendly and with high material cost are produced. In this work, a simple powder processing technology is applied to prepare n-type Bi2Te3 pellets by cold pressing (high pressure at room temperature) and annealing the treatment with a canning package to recycle waste scraps. High-pressure cold pressing causes the plastic deformation of densely packed pellets. Then, the thermoelectric properties of pellets are improved through high-temperature annealing (500 ∘C) without phase separation. This enhancement occurs because tellurium cannot escape from the canning package. In addition, high-temperature annealing induces rapid grain growth and rearrangement, resulting in a porous structure. Electrical conductivity is increased by abnormal grain growth, whereas thermal conductivity is decreased by the porous structure with phonon scattering. Owing to the low thermal conductivity and satisfactory electrical conductivity, the highest ZT value (i.e., 1.0) is obtained by the samples annealed at 500 ∘C. Hence, the proposed method is suitable for a cost-effective and environmentally friendly way.

5.
Nanomaterials (Basel) ; 12(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35745351

RESUMO

Dopamine is a neurotransmitter that helps cells to transmit pulsed chemicals. Therefore, dopamine detection is crucial from the viewpoint of human health. Dopamine determination is typically achieved via chromatography, fluorescence, electrochemiluminescence, colorimetry, and enzyme-linked methods. However, most of these methods employ specific biological enzymes or involve complex detection processes. Therefore, non-enzymatic electrochemical sensors are attracting attention owing to their high sensitivity, speed, and simplicity. In this study, a simple one-step fabrication of a Bi2Te3-nanosheet/reduced-graphene-oxide (BT/rGO) nanocomposite was achieved using a hydrothermal method to modify electrodes for electrochemical dopamine detection. The combination of the BT nanosheets with the rGO surface was investigated by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy. Electrochemical impedance spectroscopy, cyclic voltammetry, and differential pulse voltammetry were performed to analyze the electrochemical-dopamine-detection characteristics of the BT/rGO nanocomposite. The BT/rGO-modified electrode exhibited higher catalytic activity for electrocatalytic oxidation of 100 µM dopamine (94.91 µA, 0.24 V) than that of the BT-modified (4.55 µA, 0.26 V), rGO-modified (13.24 µA, 0.23 V), and bare glassy carbon electrode (2.86 µA, 0.35 V); this was attributed to the synergistic effect of the electron transfer promoted by the highly conductive rGO and the large specific surface area/high charge-carrier mobility of the two-dimensional BT nanosheets. The BT/rGO-modified electrode showed a detection limit of 0.06 µM for dopamine in a linear range of 10-1000 µM. Additionally, it exhibited satisfactory reproducibility, stability, selectivity, and acceptable recovery in real samples.

6.
Front Chem ; 10: 813008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198538

RESUMO

Reinforced concrete is among the most multifaceted materials used in the construction field. Maintaining the resistance of reinforced concrete to weathering, abrasion, and chemical attack, particularly in aggressive natural conditions such as seawater environments, is challenging. The main factor in the degradation of reinforced-concrete durability is chloride penetration, which accelerates iron alloy corrosion and facilitates structural degradation. In this study, calcium-iron-based layered double hydroxides (CaFe-LDHs) were fabricated at room temperature, followed by structural modulation, and their effectiveness in mitigating iron alloy corrosion due to chloride ions (in 3.5 wt% of NaCl) was investigated. The synthesized CaFe-LDHs with phase transfer notably improved the Cl- removal capacity (Qmax) to 881.83 mg/g, which is more than three times that reported based on previous studies. The novelty of this research lies in the sophisticated structural and phase transformations of the as-synthesized CaFe-LDHs, determination of crucial factors for chloride ion removal, and suggestion of calcium-iron-based layered double oxide (CaFe-LDO)-based chloride ion removal mechanisms considering chemical and ion-exchange reactions. Moreover, when the phase-transformed LDHs, C-700 LDOs, were applied to inhibit iron alloy corrosion, a noticeable inhibition efficiency of 98.87% was obtained, which was an 11-fold improvement compared to the case of iron alloys without LDOs. We believe this work can provide new insights into the design of CaFe-LDOs for the enhancement of the lifespan of reinforced concrete structures.

7.
Nanoscale ; 13(18): 8442-8451, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33908426

RESUMO

Metal conductive patterning has been studied as an alternative to the most commonly used indium tin oxide electrodes. Printed electrodes are fabricated by several complicated processes including etching, photolithography, and laser- and template-based techniques. However, these patterning methods have increasingly encountered critical issues of long manufacturing times and high equipment costs that necessitate vacuum and high-temperature conditions. In this study, we present a template-free solution-based patterning method for the fabrication of transparent electronics by inducing segregation-based networks of silver nanowires (SGAgNWs); this is a potential method to fabricate cost effective and scalable optoelectronics. Micro-dimensional fine-patterned segregated networks with conductive cells are created by the self-assembly of one-dimensional nanomaterials under optimal ink conditions wherein different types of solvents and aspect ratios of silver nanowires (AgNWs) are formulated. Photoelectric properties can be controlled by adjusting the size of the cell, which is an empty domain surrounded by the AgNW assembly with microscale cell-to-cell distance dimensions ranging between 4 to 345 µm. The as-obtained AgNW metal grid-formulated on a polyethylene terephthalate film-was identified as a high-performance transparent electrode (TE) device with excellent optoelectronic properties of 87.08% transmittance and 50 Ω â–¡-1 resistance. In addition, the electrical conductivity of the TE film is enhanced with a very low haze of less than 4% because of the intense pulsed light treatment that diminished the sheet resistance to 21.36 Ω â–¡-1, which is attributed to the creation of welded silver networks. The SGAgNW concept for TE technology demonstrates a very promising potential for use in next-generation flexible electronic devices.

8.
RSC Adv ; 11(18): 10951-10961, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35423558

RESUMO

The three anionic species; chloride (Cl-), sulfate (SO4 2-), and carbonate (CO3 2-), are typical chemical factors that environmentally accelerate failure of concrete structures with steel rebar through long-term exposure. Efficient removal of these deleterious anions at the early stage of penetration is crucial to enhance the lifespan and durability of concrete structures. Here, we synthesize CaFe-layered double hydroxide (CaFe-LDHs) by a simple one-step co-precipitation technique and structural modulation by calcination process. It is applied for the removal of Cl-, SO4 2-, and CO3 2- anions as well as corrosion inhibition on steel rebar in aqueous solutions. The synthesized CaFe-LDHs with phase transfer show notable improvement of removal capacity (Q max) toward Cl- and SO4 2- over 3.4 times and over 5.69 times, respectably, then those of previous literatures. Furthermore, the steel rebar exposed to an aqueous solution containing the three anionic sources shows a fast corrosion rate (1876.56 × 10-3 mm per year), which can be remarkably inhibited showing 98.83% of corrosion inhibition efficiency when it is surrounded by those CaFe-LDHs. The novel adsorption mechanisms of these CaFe-LDHs-induced crystals and corresponding corrosion protection properties are elucidated drawing on synergy of memory effects and chemical reactions.

9.
ACS Appl Mater Interfaces ; 11(50): 47015-47024, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31725260

RESUMO

We present a thermochemical hydrogen (TCH) gas sensor fabricated with Pt-decorated exfoliated graphene sheets and a tellurium nanowire-based thermoelectric (TNTE) layer operating at room temperature in wet air. The sensor device was able to detect 50 ppm to 3% of hydrogen gas within several seconds (response/recovery times of 6/5.1 s at 4000 ppm of hydrogen gas) at room temperature due to the relatively high surface area of homogeneously dispersed Pt nanocrystals (∼8 nm) decorated on graphene sheets and the excellent Seebeck coefficient (428 µV/K) of the TNTE layer. Furthermore, it was observed that the effect of the relative humidity on sensing properties was greatly minimized by incorporating Pt-decorated graphene sheets. These results indicate that our device has great potential as a low power consumption gas sensor for IoTs.

10.
ACS Appl Mater Interfaces ; 11(29): 26222-26227, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31117434

RESUMO

Rare-earth-based core-shell spring nanomagnets have been intensively studied in the permanent magnet industry. However, the inherent agglomeration characteristics of zero-dimensional (0-D) magnetic nanoparticles are an issue in practical fabrication of magnetic nanocomposites due to deterioration in exchange-coupling interactions, resulting in inferior magnetic performance. Here, with an aim to overcome the structural limitations, we report a new type of SmCo/FeCo core-shell nanomagnet with a well-dispersed one-dimensional (1-D) structure prepared by a combination of electrospinning and electroless plating processes. An FeCo layer with a tailored thickness on nanoscale SmCo was produced to achieve a sufficient exchange-coupling effect. The influence of electroless plating time on the microstructure of fibers was discussed, and comparisons were made as a function of the magnet shape. A 1-D SmCo/FeCo spring nanomagnet having a core diameter ranging from 150 to 200 nm and a shell thickness of 15-20 nm showed a potent exchange-coupling effect compared with its 0-D counterpart. This effectively reduced self-aggregation and further showed a remarkable enhancement in (BH)max (above 45.7%). We think that this novel structure marks a new era in the exchange-spring magnet industry and may overcome the limitations of traditional core-shell nanomagnets.

11.
Mater Sci Eng C Mater Biol Appl ; 99: 900-904, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30889764

RESUMO

A paper-type colorimetric detector for identifying the degree of alkali ion concentration with the naked eye was fabricated using polydiacetylene/nanoporous rice husk silica (PDA/NP-SiO2) nanocomposites as a potentially effective, rapid, and facile approach to detect alkali ion in aqueous solution. This study is worth investigating because it has the advantage of visually confirming the alkaline ion in aqueous solution without the aid of other analytical instruments directly at on-site as if pH indicator analysis. The concept of this study is the facile synthetic route of PDA and NP-SiO2. Nanoporous rice husk silica (NP-SiO2) with a high specific surface area 450 m2/g was extracted from leached rice husk ash via a sol-gel process and utilized for efficient absorption of alkali ion. PDA was used as a material to differentiate the degree of alkali ion drawing using only the change of color. By compositing these two materials on the surface of filter paper using the spray drying method, the resulting PDA/NP-SiO2 composites with NP-SiO2 of the different specific surface areas showed a different change of color indicated by the degree of alkali ions even at a low concentration of less than 122 µm. The composite was further analyzed by UV spectroscopy for a change of color and images for screening depending on the alkali ion concentrations. The color response percentage of the PDA/NP-SiO2 composites (PDA/449S; SBET 449.9213 m2/g) was 23.39% at 0.122 mM of NH4OH. Consequently, the result from this study showed the possibility of sensitively distinguishing the alkali ions ranging from pH 9.86 to pH 11.38 using only the naked eye, brought potential features that can be used as a convenient and facile primary water testing kit in practical applications.


Assuntos
Álcalis/química , Colorimetria/instrumentação , Nanoporos , Oryza/química , Papel , Polímero Poliacetilênico/química , Dióxido de Silício/química , Concentração de Íons de Hidrogênio , Nanoporos/ultraestrutura , Temperatura
12.
Front Chem ; 6: 458, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30345270

RESUMO

Nitrogen doped TiO2 (N-TiO2) nanoparticles were synthesized via a novel plasma enhanced electrolysis method using bulk titanium (Ti) as a source material and nitric acid as the nitrogen dopant. This method possesses remarkable merits with regard to the direct-metal synthesis of nanoparticles with its one-step process, eco-friendliness, and its ability to be mass produced. The nanoparticles were synthesized from bulk Ti metal and dipped in 5-15 mmol of a nitric acid electrolyte under the application of AC 500 V, the minimum range of voltage to generate plasma. By controlling the electrolyte concentration, the nanoparticle size distribution could be tuned between 12.1 and 24.7 nm using repulsion forces via variations in pH. The prepared N-TiO2 nanoparticles were calcined at between 100 and 300°C to determine their photocatalytic efficiency within the visible-light region, which depended on their crystal structure and N doping content. Analysis showed that the temperature treatment yielded an anatase TiO2 crystalline structure when the N doping content was varied from 0.4 to 0.54 at.%. In particular, the 0.4 at.% N doped TiO2 catalyst exhibited the highest catalytic performance with quadruple efficiency compared to the P-25 standard TiO2 nanoparticles, which featured a 91% degradation of methyl orange organic dye within 300 min. This solid-liquid reaction based on plasma enhanced electrolysis could open new pathways with regard to high purity mass producible ceramic nanoparticles with advanced properties.

13.
Sci Rep ; 8(1): 15656, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30353068

RESUMO

Rare earth permanent magnets with superior magnetic performance have been generally synthesized through many chemical methods incorporating calcium thermal reduction. However, a large challenge still exists with regard to the removal of remaining reductants, byproducts, and trace impurities generated during the purifying process, which serve as inhibiting intermediates, inducing productivity and purity losses, and a reduction in magnetic properties. Nevertheless, the importance of a post-calciothermic reduction process has never been seriously investigated. Here, we introduce a novel approach for the synthesis of a highly pure samarium-cobalt (Sm-Co) rare earth nanomagnet with near theoretical ultra-high magnetic performance via consecutive calcium-assisted reduction and chemoselective dissolution. The chemoselective dissolution effect of various solution mixtures was evaluated by the purity, surface microstructure, and magnetic characteristics of the Sm-Co. As a result, NH4Cl/methanol solution mixture was only capable of selectively rinsing out impurities without damaging Sm-Co. Furthermore, treatment with NH4Cl led to substantially improved magnetic properties over 95.5% of the Ms for bulk Sm-Co. The mechanisms with regard to the enhanced phase-purity and magnetic performance were fully elucidated based on analytical results and statistical thermodynamics parameters. We further demonstrated the potential application of chemoselective dissolution to other intermetallic magnets.

14.
Front Chem ; 6: 18, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29468154

RESUMO

High-throughput synthesis of Samarium-Cobalt sub-micron fibers with controlled composition and dimension was demonstrated by combining electrospinning and reduction-diffusion processes. The composition of fibers was readily varied (8 < Sm < 20 at.%) by adjusting precursor composition whereas the diameter of fibers was precisely controlled by varying electrospinning parameters (e.g., applied voltage, solution feed rate, temperature, and humidity) to reach single-domain size. X-ray diffraction patterns confirmed that single phase Sm2Co17 fibers were synthesized when the metal precursor ratio (Sm3+/(Sm3++Co2+)) was precisely controlled at 10.6%, whereas mixed phases (i.e., Co-Sm2Co17 or Sm2Co17-Sm2Co7) were observed when the ratio is deviated from the stoichiometric. Magnetic saturation (Ms ) of the synthesized fibers monotonically decreased with an increased in Sm content. In contrast, coercivity (Hci) monotonically increased with an increase in Sm content.

15.
RSC Adv ; 8(52): 29995-30001, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35547312

RESUMO

In this study, the sensing properties of palladium-doped porous silicon (Pd/p-Si) substrates for low-ppm level detection of toxic H2S gas are investigated. A Si substrate with dead-end pores ranging from nano- to macroscale was generated by a combined process of metal-assisted chemical etching (MacE) and electrochemical etching with tuned reaction time, in which nano-Pd catalysts were decorated by E-beam sputtering deposition. The sensing properties of the Pd/p-Si were enhanced as the thickness of the substrate layer increased; along with the resulting variation in surface area, this resulted in superior H2S sensing performances in the low-ppm range (less than 3 ppm), with a detection limit of 300 ppb (sensitivity 30%) at room temperature. Furthermore, the sensor displayed excellent selectivity toward the hazardous H2S molecules in comparison with various other reducing gases, including NO2, CO2, NH3, and H2, showing its potential for application in workplaces or environments affected by other toxic gases. The enhancement in sensing performance was possibly due to the increased dispersion and surface area of Pd nano-catalysts, which led to an increase in chemisorption sites of adsorbate molecules.

16.
Sensors (Basel) ; 17(12)2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29182573

RESUMO

In this study, a graphene-doped porous silicon (G-doped/p-Si) substrate for low ppm H2 gas detection by an inexpensive synthesis route was proposed as a potential noble graphene-based gas sensor material, and to understand the sensing mechanism. The G-doped/p-Si gas sensor was synthesized by a simple capillary force-assisted solution dropping method on p-Si substrates, whose porosity was generated through an electrochemical etching process. G-doped/p-Si was fabricated with various graphene concentrations and exploited as a H2 sensor that was operated at room temperature. The sensing mechanism of the sensor with/without graphene decoration on p-Si was proposed to elucidate the synergetic gas sensing effect that is generated from the interface between the graphene and p-type silicon.

17.
Cytotherapy ; 17(5): 536-42, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25618562

RESUMO

BACKGROUND AIMS: Adipose-derived stem cells have the ability to turn into several clinically important cell types. However, it is difficult to transfect these cells with the use of conventional cationic lipid-based reagents. Polyethylenimine (PEI) is considered to be an inexpensive and effective tool for delivery of nucleic acids into mammalian cells. METHODS: We used a linear PEI conjugated with the nuclear localization signal (NLS) peptide of Simian vacuolating virus 40 large T antigen (PEI-NLS) for transfection of plasmid DNA into adipose-derived cells. We also tested if transfection of cells in suspension might improve the degree and duration of exogenous gene expression. RESULTS: Transfection of cells in suspension with the use of a PEI conjugated with an NLS peptide resulted in high levels of reporter gene expression for an extended period of time in clonal 3T3-L1 preadipocytes and native human adipose-derived stem cells. The reporter gene expression increased for 3 days after the addition of the PEI-NLS peptide-DNA mixture in cell suspension and remained significant for at least 7 days. Cell density did not influence the level of reporter gene expression. Thus, the suspension method with the use of an NLS peptide-conjugated PEI leads to a robust and sustained expression of exogenous genes in adipose-derived cells. CONCLUSIONS: The devised transfection method may be useful for reprogramming of adipose-derived stem cells and cell-based therapy.


Assuntos
Tecido Adiposo/citologia , Sinais de Localização Nuclear/metabolismo , Peptídeos/metabolismo , Polietilenoimina/química , Células-Tronco/metabolismo , Transfecção/métodos , Células 3T3-L1 , Sequência de Aminoácidos , Animais , Células CHO , Contagem de Células , Cricetinae , Cricetulus , Expressão Gênica , Genes Reporter , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Sinais de Localização Nuclear/química , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...