Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37106689

RESUMO

Information technology has been actively utilized in the field of imaging diagnosis using artificial intelligence (AI), which provides benefits to human health. Readings of abdominal hemorrhage lesions using AI can be utilized in situations where lesions cannot be read due to emergencies or the absence of specialists; however, there is a lack of related research due to the difficulty in collecting and acquiring images. In this study, we processed the abdominal computed tomography (CT) database provided by multiple hospitals for utilization in deep learning and detected abdominal hemorrhage lesions in real time using an AI model designed in a cascade structure using deep learning, a subfield of AI. The AI model was used a detection model to detect lesions distributed in various sizes with high accuracy, and a classification model that could screen out images without lesions was placed before the detection model to solve the problem of increasing false positives owing to the input of images without lesions in actual clinical cases. The developed method achieved 93.22% sensitivity and 99.60% specificity.

2.
Technol Health Care ; 30(1): 93-104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34092669

RESUMO

BACKGROUND: The motion or gestures of a person are primarily recognized by detecting a specific object and the change in its position from image information obtained via an image sensor. However, the use of such systems is limited due to privacy concerns. OBJECTIVE: To overcome these concerns, this study proposes a radar-based motion recognition method. METHODS: Detailed human body movement data were generated using ultra-wideband (UWB) radar pulses, which provide precise spatial resolution. The pulses reflected from the body were stacked to reveal the body's movements and these movements were expressed in detail in the micro-range components. The collected radar data with emphasized micro-ranges were converted into an image. Convolutional neural networks (CNN) trained on radar images for various motions were used to classify specific motions. Instead of training the CNNs from scratch, transfer learning is performed by importing pretrained CNNs and fine-tuning their parameters with the radar images. Three pretrained CNNs, Resnet18, Resnet101, and Inception-Resnet-V2, were retrained under various training conditions and their performance was experimentally verified. RESULTS: As a result of various experiments, we conclude that detailed motions of subjects can be accurately classified by utilizing CNNs that were retrained with images obtained from the UWB pulse radar.


Assuntos
Corpo Humano , Movimento , Radar , Frequência Cardíaca , Humanos , Redes Neurais de Computação
3.
Technol Health Care ; 29(5): 859-868, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33427703

RESUMO

BACKGROUND: The pulse transit time is an important factor that can be used to estimate the blood pressure indirectly. In many studies, pressures in the artery near and far from the heart are measured or the electrocardiogram and photoplethysmography are used to calculate the pulse transit time. In other words, the so-called contact measurements have been mainly used in these studies. OBJECTIVE: In this paper, a new method based on radar technology to measure the pulse transit time in a non-contact manner is proposed. METHODS: Radar pulses were simultaneously emitted to the chest and the wrist, and the reflected pulses were accumulated. Heartbeats were extracted by performing principal component analysis on each time series belonging to the accumulated pulses. Then, the matched heartbeat pairs were found among the heartbeats obtained from the chest and wrist and the time delay between them, i.e. the pulse transit time, was obtained. RESULTS: By comparing the pulse transit times obtained by the proposed method with those obtained by conventional methods, it is confirmed that the proposed method using the radar can be used to obtain the pulse transit time in a non-contact manner.


Assuntos
Análise de Onda de Pulso , Radar , Eletrocardiografia , Frequência Cardíaca , Humanos , Fotopletismografia , Processamento de Sinais Assistido por Computador
4.
J Healthc Eng ; 2018: 4832605, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29808110

RESUMO

Measuring the physiological functions of the human body in a noncontact manner through walls is useful for healthcare, security, and surveillance. And radar technology can be used for this purpose. In this paper, a new method for detecting the human heartbeat using ultra wideband (UWB) impulse radar, which has advantages of low power consumption and harmlessness to human body, is proposed. The heart rate is extracted by processing the radar signal in the time domain and then using a principal component analysis of the time series data to indicate the phase variations that are caused by heartbeats. The experimental results show that a highly accurate detection of heart rate is possible with this method.


Assuntos
Frequência Cardíaca/fisiologia , Monitorização Fisiológica/métodos , Pulso Arterial/métodos , Radar , Processamento de Sinais Assistido por Computador , Eletrocardiografia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...