Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 15189, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071079

RESUMO

Mid-Brunhes Event (MBE) occurred at approximately 420 ka between Marine Isotope Stage 11 and 12, and is considered the most pronounced climatic shift during the last ~ 800 kyrs. On the other hand, it is unclear if the MBE was global, despite being observed in the high-latitude Northern Hemispheric cryosphere in terms of climate systems. A 5.35-m long gravity core ARC5-MA01 was obtained from the northern Mendeleev Ridge in the western Arctic Ocean to track the paleoenvironmental changes in terms of the terrigenous sedimentation in response to the glacial-interglacial climate changes across the MBE. Geochemical proxies (biogenic opal, total organic carbon, C/N ratio, carbon isotope of organic matter, and calcium carbonate) of MA01 suggest that the terrigenous input was generally higher during the interglacial periods. Based on a mineralogical examination, most of the terrigenous input was attributed to the abundance of dolomite and the increased kaolinite content from North America. In particular, most paleoceanographic proxies showed that the terrigenous input from North America was enhanced distinctly during the post-MBE interglacial periods. These results suggest that the MBE in the western Arctic Ocean was a global climatic shift closely linked to cryospheric development in North America during the middle Pleistocene.


Assuntos
Isótopos de Carbono , Regiões Árticas , América do Norte , Oceanos e Mares
2.
Environ Geochem Health ; 41(1): 481-505, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29623519

RESUMO

This study was initiated to develop a model specialized to conduct human risk assessments (HRAs) of abandoned metal mine areas in Korea. The Korean guideline (KG) model used in study was formulated via modification of the original Korean guidelines on HRAs of soil contamination. In addition, the newly developed model was applied to the HRAs of two abandoned metal mines contaminated with arsenic (As) and heavy metals (Cd, Cu, Pb, and Zn). The results of the KG model were compared with those of two internationally renowned models [Contaminated land exposure assessment (CLEA) and CSOIL models]. The HRA results of the three models indicated that the areas of concern were unsafe when it came to both carcinogenic and non-carcinogenic hazards. Furthermore, the hazards in both areas were mostly attributed to As and the predominant exposure pathways were identified as crop intake in the KG model and surface soil dermal contact in CLEA and CSOIL models. Accordingly, measures to protect against As exposure should be established immediately to prevent adverse health effects on inhabitants in these areas. A comparison of HRA results revealed significant differences between KG, CLEA, and CSOIL models due to the various types of exposure pathways, contaminants, and input data, such as exposure factors and receptor parameters. This study suggests that set-up of an exposure scenario is crucial for the successful performance of HRAs, and the most relevant HRA model should be deliberately selected to attain risk assessment goals.


Assuntos
Arsênio/toxicidade , Monitoramento Ambiental/métodos , Metais Pesados/toxicidade , Modelos Teóricos , Poluentes do Solo/toxicidade , Carcinógenos Ambientais/toxicidade , Humanos , Mineração , República da Coreia , Medição de Risco
3.
Chemosphere ; 138: 821-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26295541

RESUMO

Atomic force microscopy in contact (AFM-C) mode was used to investigate the molecular dynamics of leonardite humic acid (HA) aggregate formed at different pH values. HA nanoparticles dispersed at pH values ranging from 2 to 12 were observed on a mica surface under dry conditions. The most clearly resolved and well-resulted AFM images of single particle were obtained at pH 5, where HA appeared as supramolecular particles with a conic shape and a hole in the centre. Those observations suggested that HA formed under these conditions exhibited a pseudo-amphiphilic nature, with secluded hydrophobic domains and polar subunits in direct contact with hydrophilic mica surface. Based on molecular simulation methods, a lignin-carbohydrate complex (LCC) model was proposed to explain the HA ring-like morphology. The LCC model optimized the parameters of ß-O-4 linkages between 14 units of 1-4 phenyl propanoid, and resulted in an optimized structure comprising 45-50 linear helical molecules looped spirally around a central cavity. Those results added new insights on the adsorption mechanism of HA on polar surfaces as a function of pH, which was relevant from the point of view of natural aggregation in soil environment.


Assuntos
Substâncias Húmicas/análise , Microscopia de Força Atômica , Minerais/análise , Nanopartículas/química , Adsorção , Silicatos de Alumínio/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Minerais/química , Simulação de Dinâmica Molecular , Solo/química
4.
Environ Technol ; 35(1-4): 251-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24600863

RESUMO

Arsenite sorption from aqueous solutions was investigated using two-line ferrihydrite at room temperature, as a function of solution pH and arsenite loading. The isotherms, pH envelopes, and kinetics of arsenite sorption were characterized and its mechanism was elucidated via X-ray absorption spectroscopic studies. Arsenite sorption showed only slight pH dependence with a sorption maximum centered around pH 8.0. The Langmuir isotherm is most appropriate for arsenite sorption over the wide range of pH, indicating the homogenous and monolayer sorption of arsenite. The kinetic study demonstrated that arsenite sorption onto two-line ferrihydrite is considerably fast and the equilibrium is achieved within the reaction time of 3 h. X-ray absorption near-edge structure spectroscopy elucidated a slight change in oxidation state of arsenite for the initial concentration of 13.35 mM at pH 4. The extended X-ray absorption fine structure (EXAFS) spectroscopy results indicate that types of surface complexes of arsenite appeared to be very similar to those proposed by the previous studies in that the bidentate binuclear corner-sharing (2C) complex is predominant at all the surface loadings. However, our EXAFS results suggest that regardless ofpH, the mixed complexes of2C and bidentate mononuclear edge-sharing surface complex (2E) as well as the 2C complex are favoured at low and intermediate surface loadings, but only the 2C complex is dominant at high surface loading. Overall, the EXAFS results support the efficient removal of arsenite by the two-line ferrihydrite through the formation of highly stable inner-sphere surface complexes, such as 2C complex.


Assuntos
Arsenitos/química , Arsenitos/isolamento & purificação , Compostos Férricos/química , Espectroscopia Fotoeletrônica/métodos , Água/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...